

Learn C Programming

A beginner's guide to learning C programming the easy and
disciplined way

Jeff Szuhay

BIRMINGHAM - MUMBAI

Learn C Programming
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto
Content Development Editor: Digvijay Bagul
Senior Editor: Rohit Singh
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Joshua Misquitta

First published: June 2020

Production reference: 1260620

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-991-7

www.packt.com

http://www.packt.com

To Jaimie, my daughter and "inload manager," this book is for you.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Jeff Szuhay is the principal developer at QuarterTil2, which specializes in graphics-rich
software chronographs for desktop environments. In his software career of over 35 years,
he has engaged in the full range of development activities, from systems analysis and
systems performance tuning to application design, and from initial development through
full testing and final delivery.

Throughout this time, he has taught about computer applications and programming
languages at various educational levels, from elementary school to university level, as well
as developing and presenting professional, on-site training.

I would like to thank, first of all, my teachers who instructed, cajoled, and inspired me.
Notable among these are George Novacky Ph.D. and Alan Rose Ph.D. I would also like to
thank the following colleagues who had the courage to help me see where I went awry:
Dave Kipp, Tim Snyder, Sam Caruso, Mark Dalrymple, Tony McNamara, Jake Penzell,
and Bill Geraci. And lastly, thanks to my wife, Linda, who listened patiently through all of
it.

About the reviewer
B. M. Harwani is the founder of Microchip Computer Education, based in Ajmer, India,
which provides computer literacy in programming and web development to learners of all
ages. He further helps the community by sharing the knowledge and expertise he's gained
over 20 years of teaching by writing books. His recent publications include jQuery Recipes,
published by Apress, Introduction to Python Programming and Developing GUI Applications
with PyQT, published by Cengage Learning, The Android Tablet Developer's Cookbook,
published by Addison-Wesley Professional, UNIX and Shell Programming, published by
Oxford University Press, and Qt5 Python GUI Programming Cookbook and Practical C
Programming, published by Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: C Fundamentals
Chapter 1: Running Hello, World! 13

Technical requirements 13
Writing your first C program 14

Hello, world! 15
Understanding the program development cycle 16

Edit 16
Compile 18

Many C compilers for every OS 19
A note about IDEs 19
Installing a compiler on Linux, macOS, or Windows 20

Run 21
Verify 22
Repeat 23

A note about debugging 23
Creating, typing, and saving your first C program 24
Compiling your first C program 25
Running your first C program 26
Writing comments to clarify the program later 27

Some guidelines on commenting code 28
Adding comments to the Hello, world! program 30

Learning to experiment with code 31
Summary 32

Chapter 2: Understanding Program Structure 34
Technical requirements 35
Introducing statements and blocks 35

Experimenting with statements and blocks 37
Understanding delimiters 39
Understanding whitespace 41
Introducing statements 44

Introducing functions 46
Understanding function definitions 47

Exploring function identifiers 48
Exploring the function block 49
Exploring function return values 50
Passing in values with function parameters 52

Table of Contents

[ii]

Order of execution 57
Understanding function declarations 59
Summary 62

Chapter 3: Working with Basic Data Types 63
Technical requirements 64
Understanding data types 64
Bytes and chunks of data 67
Representing whole numbers 69

Representing positive and negative whole numbers 70
Specifying different sizes of integers 70

Representing numbers with decimals 72
Representing single characters 72
Representing Boolean true/false 73
Understanding the sizes of data types 74

The sizeof() operator 74
Ranges of values 76

Summary 78

Chapter 4: Using Variables and Assignment 79
Technical requirements 80
Understanding types and values 80
Introducing variables 81

Naming variables 82
Introducing explicit types of variables 83
Using explicit typing with initialization 83

Exploring constants 84
Literal constants 85
Defined values 87
Explicitly typed constants 88
Naming constant variables 89

Using types and assignment 89
Using explicit assignment, the simplest statement 90
Assigning values by passing function parameters 90
Assignment by the function return value 92

Summary 93

Chapter 5: Exploring Operators and Expressions 95
Technical requirements 96
Expressions and operations 96
Introducing operations on numbers 99

Considering the special issues resulting from operations on numbers 102
Understanding NaN 103
Understanding underflow NaN 103
Understanding overflow NaN 103
Considering precision 104

Table of Contents

[iii]

Exploring type conversion 104
Understanding implicit type conversion and values 104
Using explicit type conversion – casting 108

Introducing operations on characters 109
Exploring logical and relational operators 111
Bitwise operators 115
The conditional operator 116
The sequence operator 117
Compound assignment operators 118
Multiple assignments in a single expression 119
Incremental operators 120

Postfix versus prefix incrementation 120
Order of operations and grouping 122
Summary 124

Chapter 6: Exploring Conditional Program Flow 125
Technical requirements 126
Understanding conditional expressions 126
Introducing the if()… else… complex statement 127
Using a switch()… complex statement 131
Introducing multiple if()… statements 135
Using nested if()… else… statements 139

The dangling else… problem 140
Summary 143

Chapter 7: Exploring Loops and Iteration 144
Technical requirements 144
Understanding repetition 145
Understanding brute-force repetition 147
Introducing the while()… statement 150
Introducing the for()… statement 152
Introducing the do … while() statement 155
Understanding loop equivalency 157
Understanding unconditional branching – the dos and (mostly)
don'ts of goto 159
Further controlling loops with break and continue 163
Understanding infinite loops 167
Summary 168

Chapter 8: Creating and Using Enumerations 169
Technical requirements 169
Introducing enumerations 170

Defining enumerations 171
Using enumerations 173

Table of Contents

[iv]

The switch()… statement revisited 177
181Summary

Section 2: Complex Data Types
Chapter 9: Creating and Using Structures 183

Technical requirements 184
Understanding structures 184

Declaring structures 185
Initializing structures and accessing structure elements 190

Performing operations on structures – functions 191
Structures of structures 194

Initializing structures with functions 196
Printing a structure of structures – reusing functions 198

The stepping stone to object-oriented programming 201
Summary 202

Chapter 10: Creating Custom Data Types with typedef 203
Technical requirements 203
Renaming intrinsic types with typedef 204

Using synonyms 204
Simplifying the use of enum types with typedef 207
Simplifying the use of struct types with typedef 209
Other uses of typedef 212
Some more useful compiler options 213
Using a header file for custom types and the typedef specifiers 214
Summary 218

Chapter 11: Working with Arrays 219
Technical requirements 219
Declaring and initializing arrays 220

Initializing arrays 221
Accessing array elements 223

Assigning values to array elements 226
Operating on arrays with loops 226
Using functions that operate on arrays 227
Summary 231

Chapter 12: Working with Multi-Dimensional Arrays 232
Technical requirements 232
Going beyond one-dimensional arrays to multi-dimensional arrays 233

Revisiting one-dimensional arrays 233
Moving on to two-dimensional arrays 234
Moving on to three-dimensional arrays 236
Considering N-dimensional arrays 238

Table of Contents

[v]

Declaring and initializing multi-dimensional arrays 238
Declaring arrays of two dimensions 239
Initializing arrays of two dimensions 239
Declaring arrays of three dimensions 240
Initializing arrays of three dimensions 240
Declaring and initializing arrays of N dimensions 241

Accessing elements of multi-dimensional arrays 241
Manipulating multi-dimensional arrays – loops within loops 243

Using nested loops to traverse a two-dimensional array 244
Using nested loops to traverse a three-dimensional array 244

Using multi-dimensional arrays in functions 245
Summary 249

Chapter 13: Using Pointers 250
Technical requirements 251
Addressing pointers – the boogeyman of C programming 251

Why use pointers at all? 252
Introducing pointers 253

Understanding direct addressing and indirect addressing 253
Understanding memory and memory addressing 254
Managing and accessing memory 255
Exploring some analogies in the real world 256

Declaring the pointer type, naming pointers, and assigning
addresses 258

Declaring the pointer type 258
Naming pointers 259
Assigning pointer values (addresses) 260

Operations with pointers 260
Assigning pointer values 261
Differentiating between the NULL pointer and void* 262

Understanding the void* type 262
Accessing pointer targets 263
Pointer arithmetic 267
Comparing pointers 267

Verbalizing pointer operations 269
Variable function arguments 271

Passing values by reference 272
Passing addresses to functions without pointer variables 275
Pointers to pointers 276

Using pointers to structures 278
Accessing structures and their elements via pointers 279
Using pointers to structures in functions 280

Summary 282

Chapter 14: Understanding Arrays and Pointers 283

Table of Contents

[vi]

Technical requirements 284
Understanding array names and pointers 284
Understanding array elements and pointers 287

Accessing array elements via pointers 287
Operations on arrays using pointers 288

Using pointer arithmetic 288
Using the increment operator 290
Passing arrays as function pointers revisited 293
Interchangeability of array names and pointers 294

Introducing an array of pointers to arrays 297
Summary 304

Chapter 15: Working with Strings 305
Technical requirements 306
Characters – the building blocks of strings 306

The char type and ASCII 307
Beyond ASCII – UTF-8 and Unicode 310
Operations on characters 311
Getting information about characters 314
Manipulating characters 317

Exploring C strings 323
An array with a terminator 323
Strengths of C strings 323
Weaknesses of C strings 324

Declaring and initializing a string 324
String declarations 324
Initializing strings 325
Passing a string to a function 328
Empty strings versus null strings 329
Hello, World! revisited 330

Creating and using an array of strings 332
Common operations on strings – the standard library 337

Common functions 337
Safer string operations 338

Summary 341

Chapter 16: Creating and Using More Complex Structures 343
Technical requirements 344
Introducing the need for complex structures 345
Revisiting card4.h 346
Understanding an array of structures 353

Creating an array of structures 353
Accessing structure elements within an array 354
Manipulating an array of structures 357

Using a structure with other structures 362

Table of Contents

[vii]

Creating a structure consisting of other structures 362
Accessing structure elements within the structure 363
Manipulating a structure consisting of other structures 365

Using a structure with arrays 372
Understanding randomness and random number generators 372
Creating a structure with an array 374
Accessing array elements within a structure 374
Manipulating array elements within a structure 375

Revisiting the hand structure 376
Revisiting hand operations 377

Using a structure with an array of structures 378
Creating a structure with an array of structures 378
Accessing individual structure elements of the array within a structure 379
Manipulating a structure with an array of structures 381
Completing carddeck.c 381

Revisiting the deck structure 382
Revisiting deck operations 382
A basic card program 385

Summary 389

Section 3: Memory Manipulation
Chapter 17: Understanding Memory Allocation and Lifetime 391

Technical requirements 392
Defining storage classes 392
Understanding automatic versus dynamic storage classes 393

Automatic storage 393
Dynamic storage 393

Understanding internal versus external storage classes 394
Internal or local storage classes 395
External or global storage classes 396
The lifetime of automatic storage 396

Exploring the static storage class 397
Internal static storage 397
External static storage 399
The lifetime of static storage 400

Summary 400

Chapter 18: Using Dynamic Memory Allocation 401
Technical requirements 402
Introducing dynamic memory 402

A brief tour of C's memory layout 402
Allocating and releasing dynamic memory 404

Allocating dynamic memory 405
Releasing dynamic memory 406
Accessing dynamic memory 407

Table of Contents

[viii]

The lifetime of dynamic memory 408
Special considerations for dynamic allocation 408

Heap memory management 408
Memory leaks 409

The linked list dynamic data structure 411
Linked list structures 412
Declaring operations on a linked list 413

Pointers to functions 422
More complex operations on a linked list 424
A program to test our linked list structure 424

Other dynamic data structures 429
Summary 430

Section 4: Input and Output
Chapter 19: Exploring Formatted Output 432

Technical requirements 433
Revisiting printf() 433

Understanding the general format specifier form 433
Using format specifiers for unsigned integers 435

Using unsigned integers in different bases 436
Considering negative numbers as unsigned integers 437
Exploring powers of 2 and 9 in different bases 437
Printing pointer values 438

Using format specifiers for signed integers 440
Using the signed integer field width, precision, alignment, and zero-filling 440
Formatting long-long integers 441
Powers of 2 and 9 with different modifiers 441

Using format specifiers for floats and doubles 443
Using the floating-point field width, precision, alignment, and zero-filling 443
Printing doubles in hexadecimal format 444
Printing optimal field widths for doubles 445

Using format specifiers for strings and characters 447
Using the string field width, precision, alignment, and zero-filling 447
Exploring the sub-string output 448
Using single character formatting 448

Summary 449

Chapter 20: Getting Input from the Command Line 451
Technical requirements 451
Revisiting the main() function 452

The special features of main() 452
The two forms of main() 452

Using argc and argv 453
A simple use of argc and argv 454
Command-line switches and command-line processors 456

Table of Contents

[ix]

Summary 459

Chapter 21: Exploring Formatted Input 460
Technical requirements 461
Introducing streams 461

Understanding the standard output stream 463
Understanding the standard input stream 465
Revisiting the console output with printf() and fprintf() 466
Exploring the console input with scanf() 466

Reading formatted input with scanf() 467
Reading numerical input with scanf() 468
Reading string and character input with scanf() 473
Using a scan set to limit possible input characters 476
Controlling the scanf() input field width 478

Using internal data conversion 482
Using sscanf() and sprintf() to convert values into and from strings 482
Converting strings into numbers with atoi() and atod() 484

Exploring unformatted input and output 485
Getting the string input and output to/from the console 486
Using the simple input and output of strings with gets() and puts() 486

Understanding why using gets() could be dangerous 487
Creating a sorted list of names with fgets() and fputs() 488

Summary 492

Chapter 22: Working with Files 493
Technical requirements 494
Understanding basic file concepts 494

Revisiting file streams 494
Understanding the properties of the FILE streams 495
Opening and closing a file 496
Understanding file operations for each type of stream 497

Introducing the filesystem essentials 499
Introducing the filesystem 499

Understanding a file path 500
Understanding a filename 500

Opening files for reading and writing 501
Getting filenames from within the program 503
Getting filenames from the command line 505

Summary 506

Chapter 23: Using File Input and File Output 507
Technical requirements 507
File processing 508

Creating a template program to process filenames given on the command
line 508

Creating a file of unsorted names 513

Table of Contents

[x]

Trimming the input string from fgets() 514
Reading names and writing names 515

Reading unsorted names and sorting them for output 520
Using a linked list to sort names 521
Writing names in sorted order 527

Summary 529

Section 5: Building Blocks for Larger Programs
Chapter 24: Working with Multi-File Programs 531

Technical requirements 532
Understanding multi-file programs 532
Using header files for declarations and source files for definitions 533

Creating source files 534
Creating header files 534

Revisiting the preprocessor 536
Understanding the limits and dangers of the preprocessor 537

Knowing some dangers of the preprocessor 537
Using the preprocessor effectively 538
Debugging with the preprocessor 539

Creating a multi-file program 542
Extracting Card structures and functions 543
Extracting Hand structures and functions 545
Extracting Deck structures and functions 547
Finishing the dealer.c program 549

Building a multi-file program 551
Summary 553

Chapter 25: Understanding Scope 554
Technical requirements 555
Defining scope – visibility, extent, and linkage 555

Exploring visibility 556
Exploring extent 556
Exploring linkage 558

Understanding compilation units 558
Putting visibility, extent, and linkage all together 559

Exploring variable scope 560
Understanding the block scope of variables 560
Understanding function parameter scope 563
Understanding file scope 564
Understanding global scope 564

Understanding function scope 565
Understanding scope and information hiding 566
Using the static specifier for functions 568

Summary 572

Table of Contents

[xi]

Epilog 572
Taking the next steps 572

More advanced C topics 573
More advanced programming topics 574
Picking a project for yourself 575
Resources 576

Appendix A: Appendix 577
C definition and keywords 577

C keywords 577
Table of operators and their precedence 578
Summary of useful GCC and Clang compiler options 580
ASCII character set 580
The Better String Library (Bstrlib) 581

A quick introduction to Bstrlib 582
A few simple examples 583

Unicode and UTF-8 587
A brief history 587
Where we are today 587
Moving from ASCII to UTF-8 588
A UTF-to-Unicode example 588

The C standard library 589
Method 1 591
Method 2 591
Method 3 592

Other Books You May Enjoy 593

Index 596

Preface
Learning to program is the process of learning to solve problems with a computer. Your
journey in gaining this knowledge will be long and arduous with unexpected twists and
turns, yet the rewards of this journey, both small and large, are manyfold. Initial
satisfaction comes when you get your program to work and to give the correct results.
Satisfaction grows as you are able to solve larger and more complex problems than you
ever thought possible.

The beginning of your journey is learning a programming language. This book primarily
addresses that beginning: learning a programming language, in this case, C. The first step
in learning a programming language is to learn its syntax. This means understanding and
memorizing important keywords, punctuation, and the basic building blocks of program
structure.

The approach taken in Learn C Programming is intended to give you the tools, methods, and
practices you need to help you minimize the frustrations you will encounter. Every
program provided is a complete, working program using modern C syntax. The expected
output for each program is also provided.

Learning to program is especially frustrating because there are so many moving parts. By
this, I mean that every aspect of the programming process has changed over time and will
continue to change in the future. Computer hardware and operating systems will evolve to
meet new uses and challenges. Computer languages will also evolve and change to remove
old language deficiencies as well as to adapt to solving new problems. The programming
practices and methods used today will change as languages evolve. The kinds of problems
that need to be solved will also change as people use computers for different uses. And
lastly, you will change. As you use a programming language, it will change the way you
think about problems. As problems and solutions change, so does our thinking about what
will become possible. This leads to changes in computer language. It's a never-ending cycle.

Preface

[2]

C has evolved considerably from the language first developed by Denis Ritchie in the early
1970s. It was extremely simple yet powerful enough to develop early versions of the Unix
operating system at Bell Labs. Those early versions of C were not for novice programmers.
Those versions required advanced knowledge and programming skills in order to make
programs robust and stable. Over the years, as C compilers became much more widely
available, there have been several efforts to rein in unrestricted and sometimes dangerous
language features. The first was ANSI C, codified in 1989. The next major refinement came
with C99, codified in 1999; it included significant language additions and clarified many C
behaviors. Since then, two additional revisions have been made, C11 and C18, both of
which have focused on minor language additions and internal corrections to the language.

C today is much more constrained and complex than the early versions of C. Yet it retains
its power, performance, and suitability to a wide range of computing problems. This book
strives to present the most current syntax and concepts as specified in C99, C11, and C18.
Each program has been compiled and run using the C11 standard. As time goes on, C18
compliance will be much more widespread than today. I would expect, however, that all of
these programs will compile and run as intended using the C18 standard.

There will always be more to learn, even without the parts moving. After reading Learn C
Programming, you will find a particular way to make C work for you. As you gain
experience solving problems with C, you will discover new things—features, uses, and
limitations—about C that you didn't see before. So, we can say that learning to program is
as much about learning how to learn as it is about solving problems with programs.

Along the way, you will learn about other programming concepts not directly tied to the C.
The general development cycle will not only be discussed but will also be illustrated in the
development of a card dealing program. While you may not be interested in cards, pay
particular attention to the process of how this program is developed. Throughout, the basic
practices of experimentation and validation will be illustrated.

Who this book is for
When this book was conceived, it was intended for two very diverse audiences, the
absolute beginning programmer and the experienced programmer who wants to learn C.
Each of these audiences has very different needs.

For the beginning programmer, I have written this book as if I were sitting beside you
explaining the most important concepts and practices you need to know to become a
successful C programmer. I have tried to explain every concept thoroughly and have
reinforced each concept with a working program. The beginner should be familiar with the
general operation of their computer; no other knowledge is assumed.

Preface

[3]

For the experienced programmer, I have presented the full range of C syntax as well as
common C idioms. You may skim the explanations and focus primarily upon the source
code provided.

For both, there are over 80 working programs that demonstrate both the syntax of C as well
as the flavor of C programming idioms—things that are common in C but not found in
other languages. I have sprinkled in programming practices and techniques that have
served me well in my nearly 35 years of experience.

What this book covers
Section 1, C Fundamentals, introduces the very basic concepts of C syntax and program
structure.

Chapter 1, Running Hello, World!, introduces the program development cycle and the tools
you'll need for the rest of the book. Those tools are used to create, build, and run your first
C program, a "Hello, world!" program. The concepts of commenting code and
experimenting with code are also introduced.

Chapter 2, Understanding Program Structure, introduces statements and blocks. It also
describes function definitions and function declarations, also known as function
prototypes. How functions are called and their order of execution is illustrated. Statements,
blocks, and functions define the structure of C programs.

Chapter 3, Working with Basic Data Types, explores how C represents values in various
ways through the use of data types. Each data type has a size and possible range of values
that C uses to interpret a value.

Chapter 4, Using Variables and Assignment, introduces variables and constants, which are
used to contain values. For a variable to receive a value, that value must be assigned to it;
several types of assignment are explained.

Chapter 5, Exploring Operators and Expressions, introduces and demonstrates
operations—ways to manipulate values—on each of the various data types.

Chapter 6, Exploring Conditional Program Flow, introduces flow of control statements, which
execute one group of statements or another depending upon the result of an expression.

Chapter 7, Exploring Loops and Iteration, introduces each of the looping statements. It also
describes the proper and improper use of goto. Additional means of controller loop
iterations are explained.

Preface

[4]

Chapter 8, Creating and Using Enumerations, explains named constants, enumerations, and
how to use them.

Section 2, Complex Data Types, extends your understanding of the concepts of basic, or
intrinsic, data types to more complex types.

Chapter 9, Creating and Using Structures, explores how to represent complex objects with
groups of variables, called structures. Operations on structures are explored. How
structures are related to object-oriented programming is described.

Chapter 10, Creating Custom Data Types with typedef, describes how to rename enum and
struct declarations. Compiler options and header files are explored.

Chapter 11, Working with Arrays, illustrates how to define, initialize, and access simple
arrays. Using loops to traverse arrays is explored. Operating on arrays via functions is
demonstrated.

Chapter 12, Working with Multi-Dimensional Arrays, extends your understanding of the
concept of 1-dimensional arrays to 2, 3, and n-dimensional ones. Declaring, initializing, and
accessing these multi-dimensional arrays in loops and in functions are demonstrated.

Chapter 13, Using Pointers, explores direct and indirect addressing with pointers.
Operations with pointers are demonstrated. How to think and talk about pointers is
described. Using pointers in functions and using pointers to structures is demonstrated.

Chapter 14, Understand Arrays and Pointers, explores the similarities and differences
between pointers and arrays.

Chapter 15, Working with Strings, introduces the ASCII character set and C strings, which
are arrays with two special properties. A program to print the ASCII character set in a table
is developed. The C Standard Library string operations are introduced.

Chapter 16, Creating and Using More Complex Structures, builds upon the concepts of
structures and arrays to explore how to create various combinations of complex structures.
Throughout the chapter, each complex structure is demonstrated through the development
of a complete card dealing program. This chapter provides the most comprehensive
example of the method of stepwise, iterative program development.

Section 3, Memory Manipulation, explores how memory is allocated and deallocated in a
variety of ways.

Preface

[5]

Chapter 17, Understanding Memory Allocation and Lifetime, introduces the concepts of
automatic versus dynamic memory storage classes as well as internal versus external
storage classes. The static storage class is demonstrated.

Chapter 18, Using Dynamic Memory Allocation, introduces the use of dynamic memory and
describes various operations on dynamic memory. A dynamic linked-list program is
demonstrated. An overview of other dynamic structures is provided.

Section 4, Input and Output, explores a wide variety of topics related to the reading (input)
and writing (output) of values.

Chapter 19, Exploring Formatted Output, goes into thorough detail about the various format
specifiers of printf() for each of the intrinsic data types: signed and unsigned integers,
floats and doubles, and strings and characters.

Chapter 20, Getting Input from the Command Line, demonstrates how to use
the argc and argv parameters of main() to get values from the command line.

Chapter 21, Exploring Formatted Input, demonstrates how to read values from an input
stream using scanf(). It clarifies how the format specifiers for printf() and scanf(),
while similar, are really very different. Internal data conversion and unformatted input and
output are also demonstrated.

Chapter 22, Working with Files, is a largely conceptual chapter that introduces basic file
concepts. It demonstrates how to open and close files from within the program and from
the command line.

Chapter 23, Using File Input and File Output, demonstrates how to use command-line
switches with getopt() to read and write files. The basic program is then expanded to
read names from input, sort them via a linked list, and then write them out in sorted order.

Section 5, Building Blocks for Larger Programs, details how to create and manage programs
that consist of multiple files.

Chapter 24, Working with Multi-File Programs, demonstrates how to take the single source
file program that was developed in Chapter 16, Creating and Using More Complex Structures,
and separate it into multiple source files. Each of the source files has functions that are
logically grouped by the structures they manipulate. Effective and safe uses for the
preprocessor are described.

Preface

[6]

Chapter 25, Understanding Scope, defines various components of scope and how they
related to single- and multi-file programs. Details of variable scope and function scope are
described. The epilogue outlines some useful next steps to take in learning both C and
programming.

Appendix, provides a number of useful reference guides. These include C keywords,
operator precedence, a summary of some useful GCC and CLang options, ASCII characters,
using Bstrlib, an overview of Unicode, and an itemization of the C Standard Library.

To get the most out of this book
To use this book, you will need a basic text editor, a terminal or console application, and a
compiler. Descriptions of each of these and how to download and use them are provided in
Chapter 1, Running Hello, World!. Here are the technical requirements for this book:

Operating System Cost Download URL
Linux/Unix

Text Editor (choose one)
Nano Free https:/ ​/​www. ​nano- ​editor. ​org/ ​download. ​php
Vim or vi <Built-in> N/A
GEdit <Built-in> https:/ ​/​wiki. ​gnome. ​org/ ​Apps/ ​Gedit
Emacs Free https:/ ​/​www. ​gnu. ​org/ ​software/ ​emacs/ ​download. ​html

Compiler (Installation based on version of Linux/Unix)

GCC <Built-in> https:/ ​/​gcc. ​gnu. ​org/ ​install/ ​ (see the notes following this table
for certain Linux versions)

Terminal
Terminal <Built-in> N/A

macOS
Text Editor (choose one)

Vim or vi <Built-in> N/A
emacs Free https:/ ​/​www. ​gnu. ​org/ ​software/ ​emacs/ ​download. ​html
Bbedit Free https:/ ​/​www. ​barebones. ​com/ ​products/ ​bbedit/ ​

Compiler
Clang <Built-in>

Terminal
terminal.app <Built-in> N/A

Windows
Text Editor (choose one)

Notepad <Built-in> N/A
Notepad++ Free https:/ ​/​notepad- ​plus- ​plus. ​org/ ​downloads/ ​
emacs Free https:/ ​/​www. ​gnu. ​org/ ​software/ ​emacs/ ​download. ​html

Compiler
Cygwin Free http:/ ​/ ​www. ​cygwin. ​com
MinGW Free http:/ ​/ ​mingw- ​w64. ​org

https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://www.nano-editor.org/download.php
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://mingw-w64.org
http://mingw-w64.org
http://mingw-w64.org
http://mingw-w64.org
http://mingw-w64.org
http://mingw-w64.org
http://mingw-w64.org
http://mingw-w64.org
http://mingw-w64.org

Preface

[7]

Terminal
Console <Built-in> N/A

To install GCC on certain Linux OSes, follow these steps:

If you are running an RPM-based Linux, such as RedHat, Fedora, or CentOS, on
the command line in Terminal, enter the following:

$ sudo yum group install development-tools

If you are running Debian Linux, on the command line in Terminal, enter the
following:

$ sudo apt-get install build-essential

To verify your installation of GCC or Clang for any platform, on the command line in the
Terminal, enter the following:

$ cc --version

Whichever version of this book you are using, digital or hard copy, we advise you to type
the code yourself. After you do that, you can access the code via the GitHub repository
(link available in the next section). Doing so will help you avoid any potential errors
related to the copying and pasting of code.

If you are an absolute beginner, once you have the necessary development tools, you will
need to learn how to read a programming book. If you have taken an algebra course or a
calculus course in school, then you will need to approach learning from a programming
book in a similar fashion:

Read through the chapter to get an overview of the concepts being presented.1.
Begin the chapter again, this time typing in each program as you encounter it.2.
Make sure you get the expected output before moving on. If you don't get the
expected output, try to figure out what is different in your program from the one
given. Learning to program is a lot like learning math—you must do the
exercises and get the programs to work. You cannot learn to program just by
looking at programs; to learn to program, you must program. There is no way
around that.
Focus upon memorizing keywords and syntax. This will greatly speed up your3.
learning time.

Preface

[8]

Be aware that you will need to sharpen the precision of your thinking. Computer4.
language syntax is extremely precise and you will need to pay extra attention to
it. You will also have to think much more precisely and in sometimes
excruciating detail about the steps needed to solve a particular problem.
Review both the concepts and example programs. Make a note of anything you5.
don't understand.

If you are an experienced programmer who is new to C, I still strongly advise you to first
skim the text and examples. Then, enter the programs and get them to work on your
system. This will help you to learn C syntax and its idioms more quickly.

I have found that it is important to understand what kind of book you are reading so that
you can use it in the most appropriate way. There are several kinds of computer
programming books:

Conceptual books, which deal with the underlying ideas and motivation for the
topics they present. Kernighan and Ritchie's The C Programming Language is one
such book.
Textbooks that go through every major area of the language, sometimes in gory
detail and usually with a lot of code snippets. Deitel and Deitel's books, as well
as C Programming: A Modern Approach, by K. N. King, are examples of these. They
are often best used in a formal programming course.
Reference books, which describe the specifics of each syntax element. C: A
Reference Manual, by Harbison and Steele, is one such book.
Cookbooks, which present specific solutions to specific problems in a given
language. Advanced C Programming by Example, by Perry, Expert C Programming:
Deep Secrets, by Van Der Linden, and Algorithms in C, by Sedgewick, are
examples of these.
Topical books, which delve deeply into one or more aspects of a programing
language. Pointers in C, by Reek, is one example.
Practice books, which deal with how to address programming with C
generally. C Interfaces and Implementations, by Hanson, and 21st Century C: C Tips
from the New School, by Klemens, are two examples of these.

There are different ways to use these books. For instance, read a conceptual book once, but
keep a reference book around and use it often. Try to find cookbooks that offer the kinds of
programs you are likely to need and use them as needed.

Preface

[9]

I think of this book as a combination of a C cookbook, a C reference book, and a C practice
book. All of the programs are working examples that can be used to verify how your
compiler behaves on your system. Enough of the C language has been included that it may
also be used as a first approximation reference. Throughout, my intent has been to show
good programming practice with C.

I would expect that Learn C Programming will not be your last book on C. When you
consider other C books, be sure that they pertain to C99 at a minimum; ideally, they should
include C11 or C18. Most C code before C99 is definitely old school; more effective
programming practices and methods have been developed since before C99.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​C- ​Programming. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[10]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789349917_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "As a hint, this pairing involves the lines int main() and return 0;"

A block of code is set as follows:

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Any command-line input or output is written as follows:

$ cc hello6.c

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"This program is useful because it prints something out to the Terminal, also known as
the console."

https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789349917_ColorImages.pdf

Preface

[11]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: C Fundamentals

In this section, we're going to jump into writing simple programs as we explore the
fundamentals of not only C but general programming.

This section comprises the following chapters:

Chapter 1, Running Hello, World!
Chapter 2, Understanding Program Structures
Chapter 3, Working with Basic Data Types
Chapter 4, Using Variables and Assignment
Chapter 5, Exploring Operators and Expressions
Chapter 6, Exploring Conditional Program Flow
Chapter 7, Exploring Loops and Iteration
Chapter 8, Creating and Using Enumerations

1
Running Hello, World!

Computer programming is about learning how to solve problems with a computer – about
how to get a computer to do all the tedious work for us. The basic development cycle, or
process of writing a computer program, is to determine the steps that are necessary to solve
the problem at hand and then tell the computer to perform those steps. Our first problem,
as we learn this process, is to learn how to write, build, run, and verify a minimal C
program.

The following topics will be covered in this chapter:

Writing your first C program
Understanding the program development cycle
Creating, typing into a text editor, and saving your C program
Compiling your first C program
Running your program, verifying its result, and, if necessary, fixing it
Exploring different commenting styles and using them
Employing guided chaos, followed by careful observation for deeper learning

Let's get started!

Technical requirements
To complete this chapter and the rest of this book, you will need a running computer that
has the following capabilities:

A basic text editor that is able to save unformatted plain text
A Terminal window that commands can be entered into via the command line
A compiler to build your C programs with

Each of these will be explained in more detail as we encounter them in this chapter.

Running Hello, World! Chapter 1

[14]

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming. However, please make every effort to type the source code in
yourself. Even if you find this frustrating at first, you will learn far more and learn far more
quickly if you do all the code entry for yourself.

Writing your first C program
We will begin with one of the simplest, most useful programs that can be created in C. This
program was first used to introduce C by its creators, Brian W. Kernighan and Dennis M.
Ritchie, in their now-classic work, The C Programming Language, published in 1978. The
program prints a single line of output – the greeting Hello, world! – on the computer
screen.

This simple program is important for a number of reasons. First, it gives us a flavor of what
a C program is like, but more importantly, it proves that the necessary pieces of the
development environment – the Operating System (OS), text editor, command-line
interface, and compiler – are installed and working correctly. Finally, it gives us the first
taste of the basic programming development cycle. In the process of learning to program
and, later, actually solving real problems with programming, you will repeat this cycle
often. It is essential that you become both familiar and comfortable with this cycle.

This program is useful because it prints something out to the Terminal, also known as the
console, telling us that it actually did something – it displays a message to us. We could
write shorter programs in C but they would not be of much use. We would be able to build
and run them but would have little evidence that anything actually happened. So, here is
your first C program. Throughout this book, and during the entirety of your programming
experience, obtaining evidence of what actually happened is essential.

Since Kernighan and Ritchie introduced the Hello, world! program over 40 years ago, this
simple program has been reused to introduce many programming languages and used in
various settings. You can find variations of this program in Java, C++, Objective-C, Python,
Ruby, and many others. GitHub, an online source code repository, even introduces their
website and its functions with a Hello World beginner's guide.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Running Hello, World! Chapter 1

[15]

Hello, world!
Without further ado, here is the Hello, world! C program. It does no calculations, nor does it
accept any input. It only displays a short greeting and then ends, as follows:

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Some minor details of this program have changed since it was first introduced. What is here
will build and run with all C compilers that have been created in the last 20 years.

Before we get into the details of what each part of this program does, see if you can identify
which line of the program prints our greeting. You may find the punctuation peculiar; we
will explain this in the next chapter. Notice how some punctuation marks come in pairs,
while others do not. There are five paired and five unpaired punctuation marks in all. Can
you identify them? (We are not counting the punctuation in the message "Hello,
world!".)

There is another pairing in this simple program that is not obvious at this time, but one that
we will explore further in the next chapter. As a hint, this pairing involves the lines int
main() and return 0;.

Before we jump into creating, compiling, and running this program, we need to get an
overview of the whole development process and the tools we'll be using.

Running Hello, World! Chapter 1

[16]

Understanding the program development
cycle
There are two main types of development environments:

Interpreted: In an interpreted environment such as Python or Ruby, the program
can be entered line by line and run at any point. Each line is evaluated and
executed as it's entered and the results are immediately returned to the console.
Interpreted environments are dynamic because they provide immediate feedback
and are useful for the rapid exploration of algorithms and program features.
Programs entered here tend to require the interpreting environment to be
running as well.
Compiled: In a compiled environment such as C, C++, C#, or Objective-C,
programs are entered into one or more files, then compiled all at once, and if no
errors are found, the program can be run as a whole. Each of these phases is
distinct, with separate programs used for each phase. Compiled programs tend
to execute faster since there is a separate, full compilation phase, and can be run
independently of the interpreting environment.

As with shampoo, where we are accustomed to wet hair, lather, rinse, and repeat, we will do
the same with C – we will become familiar with the edit, compile, run, verify, and repeat cycle.

Edit
Programs are generated from text files whose filenames use predefined file extensions.
These are known as source files, or source code files. For C, the .c file extension indicates
a C source code file. An .h extension (which is present in our Hello, world! program)
indicates a C header file. The compiler looks for .c and .h files as it encounters them and
because each has a different purpose, it treats each differently as well. Other languages
have their own file extensions; the contents of a source code file should match the language
that the compiler expects.

To create and modify C files, you will need a plain text editor. This is a program that allows
you to open, modify, and save plain text without any formatting such as font size, font
family, font style, and much more. For instance, on Windows, Notepad is a plain text editor
while Word is not. The plain text editor should have the following capabilities:

File manipulation: Open a file, edit a file, save the file and any changes that have
been made to it, and save the file with another name.

Running Hello, World! Chapter 1

[17]

The ability to navigate the file: Move up, down, left, right, to the beginning of
the line, end of the line, beginning of the file, end of the file, and so on.
Text manipulation: Insert text, delete text, insert line, delete line, selection, cut,
copy, paste, undo/redo, and so on.
Search and replace: Find text, replace text, and so on.

The following capabilities are handy but not essential:

Automatic indentation
Syntax coloring for the specific programming language
Automatic periodic saving

Almost any plain text editor will do. Do not get too caught up in the features of any given
text editor. Some are better than others; some are free, while others are costly, and may not
immediately be worth the expense (perhaps later, one or more might be worthwhile but not
at this time), and none will do 100% of what you might want them to do.

Here are some free plain text editors worth installing on your computer and trying out:

Everywhere: Nano, which runs in a Terminal; a moderate learning curve.
Linux/Unix:

Vim, or vi: Runs in a Terminal; a moderate learning curve. It is on
every Linux/Unix system, so it's worth learning how to use its
basic features.
gedit: A powerful general-purpose editor.
Emacs: An everything and the kitchen sink editor; a very large
learning curve.

Windows:
Notepad: Very simple – sometimes too simple for programming –
but included in every Windows system.
Notepad++: A better version of Notepad with many features for
programming.

macOS only: BBEdit (free version), which is a full-featured GUI programming
text editor.

There are many, many text editors, each with its own strengths and weaknesses. Pick a text
editor and get used to it. Over time, as you use it more and more, it will become second
nature.

Running Hello, World! Chapter 1

[18]

Compile
The compiler is a program that takes input source code files – in our case, .c and .h files –
translates the textural source code found there into machine language, and links together
all the predefined parts needed to enable the program to run on our specific computer
hardware and OS. It generates an executable file that consists of machine language.

Machine language is a series of instructions and data that a specific Central Processing
Unit (CPU) knows how to fetch from the program execution stream and execute on the
computer one by one. Each CPU has its own machine language or instruction set. By
programming in a common language, such as C, the programmer is shielded from the
details of machine language; that knowledge is embodied in the compiler.

Sometimes, assembler language is called machine language, but that is not quite accurate
since assembler language still contains text and symbols, whereas machine language is only
binary numbers. Very few people today have the skills to read machine language directly;
at one time, many more programmers were able to do it. Times have changed!

When we compile our programs, we invoke the compiler to process one or more source
files. The result of this invocation is either a success and an executable file is generated or it
will identify the programming errors it found during compilation. Programming errors can
be a simple misspellings of names or omitted punctuation, to more complex syntax errors.
Typically, the compiler tries to make sense of any errors it finds; it attempts to provide
useful information for the problem it found. Note that try and attempts are merely goals; in
reality, the compiler may spew many lines of error messages that originate from a single
error. Furthermore, the compiler will process the entire source code when invoked. You
may find many different errors in different parts of the program for each compiler
invocation.

A complete, runnable program consists of our compiled source code – the code we write
– and predefined compiled routines that come with the OS – code written by the authors of
the OS. The predefined program code is sometimes called the runtime library. It consists of
a set of callable routines that know how to interact in detail with the various parts of the
computer. For example, in Hello, world!, we don't have to know the detailed instructions to
send characters to the computer's screen – we simply call a predefined
function, printf();, to do it for us. printf() is part of the C runtime library, as are many
other routines, as we will see later. The way in which one v sends text to the console is
likely different from any other OS, even if they both run on the same hardware. So, the
programmers are shielded not only from the minutia of machine language, but they are
also shielded from the varying implementation details of the computer itself.

Running Hello, World! Chapter 1

[19]

It follows from this that for each OS, there is a compiler and a runtime library specific to it.
A compiler designed for one OS will most likely not work on a different OS. If, by chance, a
compiler from one OS just happens to or even appears to run on a different OS, the
resulting programs and their executions would be highly unpredictable. Mayhem is likely.

Many C compilers for every OS
You can learn C on many computer platforms. Common compilers in use on Unix and
Linux OS are the GNU Compile Collection (GCC) or the LLVM compiler project, clang. For
Windows, GCC is available via the Cygwin Project or the MinGW Project. You could even
learn C using a Raspberry Pi or Arduino, but this is not ideal because of special
considerations for these minimal computer systems. It is recommended that you use a
desktop computer since many more computer resources (memory, hard drive space, CPU
capability, and so on) are available on any such computer that can run a web browser.

A note about IDEs
On many OS, the compiler is installed as a part of an Integrated Development
Environment (IDE) for that OS. An IDE consists of a set of programs needed to create,
build, and test programs for that OS. It manages one or more files associated with a
program, has its own integrated text editor, can invoke the compiler and present its results,
and can execute the compiled program. The programmer typically never leaves
this environment while developing. The IDE often streamlines the production of a
standalone working program.

There are many such IDEs – Microsoft's Windows-only Visual Studio, Microsoft's multi-
platform Visual Studio Code, Apple's Xcode for macOS and other Apple hardware platforms,
Eclipse Foundation's Eclipse, and Oracle's Netbeans, to name a few. Each of these IDEs is
able to develop programs in a variety of languages. Nearly all of the programs used in this
book were developed using a simple IDE named CodeRunner for macOS.

We will not use an IDE for learning C. In fact, at this stage of your learning, it is not
advised for several reasons. First, learning and using an IDE can be a daunting learning
task in and of itself. This task can and should be put off until you have more experience
with each of the individual parts of the program development cycle. IDEs, while they have
common functions, are sometimes implemented in vastly different ways with far too many
different features to explore. Learn C first; you can learn an IDE for your
desired environment later.

Running Hello, World! Chapter 1

[20]

Installing a compiler on Linux, macOS, or Windows
Here are the steps to follow to install a C compiler on the major desktop computer
environments – Linux, macOS, and Windows. For other platforms, you'll have to do some
investigation to find the compiler you need. However, since those platforms want you to
use them, they'll likely make those instructions easy to find and follow:

Linux:
If you are running a Red Hat Package Manager (RPM)-based Linux,1.
such as RedHat, Fedora, or CentOS, enter this command from the
command line:
$ sudo yum group install development-tools

If you are running Debian Linux, open a Terminal window and enter2.
this command from the command line:
$ sudo apt-get install build-essential

Verify your installation by entering this command from the command3.
line:
$ cc --version

From the preceding command, you will see that you likely have GCC4.
or clang. Either one is fine. You are now ready to compile C programs
on your version of Linux.

macOS:
Open Terminal.app and enter the following at the command line:1.
$ cc --version

If the development tools have not been installed yet, simply invoking2.
the preceding command will guide you through their installation.
Once the installation is complete, close the Terminal window, open a3.
new one, and enter the following:
$ cc --version

You are now ready to compile C programs on your version of macOS.4.
Windows:

Install either Cygwin (http:/ ​/​www. ​cygwin. ​com) or MinGW (http:/ ​/1.
mingw- ​w64. ​org/ ​) from their respective websites. Either one will work
well. If you choose to install Cygwin, be sure to also install the extra
package for the GNU Compiler Collection (GCC). This will install a
number of other required compiler and debugging programs with
GCC.

http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://www.cygwin.com
http://mingw-w64.org/
http://mingw-w64.org/
http://mingw-w64.org/
http://mingw-w64.org/
http://mingw-w64.org/
http://mingw-w64.org/
http://mingw-w64.org/
http://mingw-w64.org/
http://mingw-w64.org/

Running Hello, World! Chapter 1

[21]

Once the installation is complete, open a Command Prompt and enter2.
the following:
$ cc --version

You are now ready to compile C programs on your version of3.
Windows.

Compilation is a two-part process – compiling and linking. Compiling involves syntax
checking and converting source code into nearly-complete executable code. In the linking
phase, the nearly-complete machine code is merged with the runtime library and becomes
complete. Typically, when we invoke the compiler, the linker is also invoked. If the
compiler phase succeeds (no errors), the linking phase is automatically invoked. Later, we
will see that we can get error messages from the compiler either at compile-time – the
compiling phase – or at link-time – the linking phase – when all the program's pieces are
linked together.

We will learn how to invoke the compiler later when we compile our first program.

Throughout this book, once you have a working program, you will be directed to
purposely break it – cause the compilation of your program to fail – so that you can
start learning about the correlation of various program errors with compiler errors and so
that you will not be afraid of breaking your program. You will simply undo the change and
success will be yours once more.

Run
Once compilation has completed successfully, an executable file will be generated. This
executable file, unless we provide an explicit name for it, will be named a.out. The
executable file will typically be created in the same directory the compiler was invoked
from. For the most part, we will make our current working directory have the same location
as the source files.

Running an executable file is performed by invoking it from the command line. When
invoked, the executable is loaded into the computer's memory and then becomes the CPU's
program execution stream. Once loaded into memory, the CPU begins at the special
reserved word known as main() and continues until either return; or a closing } is
encountered. The program stops and the executable is then unloaded from memory.

To run an executable, open a Command Prompt (Windows) or Terminal window (Linux
and Mac), navigate with cd to the directory of the executable file, and simply enter the
executable's name (a.out, or whatever you've specified).

Running Hello, World! Chapter 1

[22]

Note: If you successfully navigate to the same location as the executable and
you have verified it exists there but you get an error message from the
command interpreter, you likely have a problem with your command
interpreter's built-in PATH variable. To quickly work around this, enter the $
./a.out command to run it. This instructs the command interpreter to look
in the current directory for the file named a.out.

As the program runs, any output will be directed to the Terminal or console window. When
the program has ended, the command interpreter will present you with a new command
prompt.

Verify
At this point in the cycle, you may feel that just getting your program to compile without
errors and running it without crashing your computer means you are done. However, you
are not. You must verify that what you think your program was supposed to do is what it
actually did do. Did your program solve the problem it was intended to? Is the result
correct?

So, you have to return to writing your original program and then compare that to the
output your program gives. If your intended result matches, your program is correct. You
are done.

As we get further into writing more complex programs, we will see that a proper or good
program exhibits each of the following qualities:

Correct: The program does what it's supposed to do.
Complete: The program does everything it's supposed to do.
Concise: The program does no more than it's supposed to do and it does so as
efficiently as possible.
Clear: The program is easily understandable to those who use it and to those
who must maintain it.

For most of this book, we will concern ourselves largely with correctness, completeness, and
clarity. Currently, hello1.c is not complete, nor clear, and we will see why shortly.

Running Hello, World! Chapter 1

[23]

Repeat
Unlike our shampoo metaphor that we mentioned previously, which was wet hair, lather,
rinse, and repeat, instead of repeating the instructions just once, you will repeat this cycle
more than once.

Rarely will you be able to go through the program development cycle with only one
iteration of it. Most likely, you will repeat parts of it many more times. You may edit the
source code and compile it and find that the compiler failed. You will have to go back to
edit the source code and compile it, each time figuring out what was wrong and then fixing
it. Once it compiles successfully, you will move on to running and verifying it. If the output
is not correct or the program crashes, you will have figure out what went wrong and start
editing the source code again.

Does this sound frustrating? It can be – especially when you don't know why something
went wrong or you can't figure out what the compiler or computer is saying is wrong.

Many, many years ago, when compilers were simpler and not as forgiving as they are
today (actually, compilers are still not forgiving – they've just gotten better at figuring out
what we humans may have done wrong with our programs and telling us in better ways!),
the very first time I attempted to compile my Hello, world! program on a Digital Equipment
Virtual Address Extension (VAX) Virtual Memory System (VMS) C compiler, the
compiler gave me 23 thousand error messages. It turns out that I had overlooked a single ;
somewhere. One character. Sheesh!

The point of that story is that you will make mistakes, mostly missing or erroneous
punctuation or misspelled variables, and you will get frustrated. Part of learning to
program is learning how to deal with your own frustration and how to become a sleuth to
track down the picayune errors that will crop up.

Get up and away from the computer. Take a walk. Have a laugh. Get back to work. Don't omit
the first parts (laughing and walking around a bit).

A note about debugging
As you go through the program development cycle and as you get more familiar with the
development language, development tools, and yourself (yes, you are learning about
yourself as you program), this will all become second nature to you, as it should. When you
make a typing error, or when you get an obviously incorrect result, these are not bugs –
they are just mistakes. Bugs are far more subtle.

Running Hello, World! Chapter 1

[24]

There is a deeper trap that is very difficult for most beginner programmers to see; that is,
their own assumptions about what should happen without evidence of what did happen.
Most of the most difficult bugs that I introduced in my own code were those that I assumed
the program would work on in a certain way but I did not verify that. When I finally went
back to my assumptions and proved them in code, I was able to get beyond my self-
imposed bugs.

Can you avoid this trap?

Yes. Throughout this book, we will attempt to mitigate this subtle problem with a method
we will use to develop programs. As we proceed, we will use trial and error, guided
discovery, and evidence through observation. Sometimes, we will purposefully break our
programs to see what happens. We will also try to prove each concept so that the expected
behavior matches the actual behavior.

This is not to say that even with such an approach, bugs won't creep in. They will. But with
careful attention to your own assumptions, observed behavior, and the collection of
evidence you have gathered to prove any assumption, most bugs can be avoided.

Creating, typing, and saving your first C
program
Let's begin creating our Hello, world! program.

Before we begin creating files, create a directory on your computer where you will save all
of the work for this book. Perhaps you will create it in your $HOME directory, or in your
Documents folder. My advice is to put it somewhere in a user directory of your choice.
Let's go ahead with our program:

Open a Command Prompt, Terminal window, or console (depending on your1.
OS).
Navigate to $HOME or ./Documents, or wherever you chose to work from, and2.
create a directory for the programs you'll write in this book. Do this with the
following command:
$ mkdir PacktLearnC

Make that directory your current working directory with the following3.
command:
$ cd PacktLearnC

Make a new directory for this chapter with the following command:4.
$ mkdir Chapter1_HelloWorld

Running Hello, World! Chapter 1

[25]

Make that directory your current working directory with the following5.
command:
$ cd Chapter1_HelloWorld

Picking the text editor of your choice – any will do – open the text editor either6.
from the command line or from the GUI (depending on both your OS and your
preference of which one you wish to use):

From the command line, you might enter $ myEditor hello1.c, or
just $ myEditor, and later, you will have to save the file as hello1.c
in the current working directory.

Enter the following program text exactly, all while paying attention to spacing,7.
{} versus () versus "" (these double-quotation marks are the key next to the ;
and : keys) versus <>, with particular attention being paid to #, \, ., and ;:

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Save your work and exit the editor.8.
Verify that hello1.c exists by listing the directory and verifying that its file size9.
is not zero.

Congratulations! You have completed your first editing phase of the program development
cycle.

Compiling your first C program
Having successfully entered and saved your hello1.c file, it is now time to compile it:

In a Terminal, command line, or console window (depending on your OS), with1.
the current working directory the same as your hello1.c file, enter $ cc
hello1.c.
Once this is done and you have a new command-line prompt, verify that you2.
have a file named a.out.

You have completed your first compiling phase of the program development cycle.

Running Hello, World! Chapter 1

[26]

If the compiler spews out some error messages, try to read what the compiler is telling you
and try to understand what error it is telling you to fix. Always focus on the very first error
message first; later error messages are usually the result of the very first error. Then, go
back to the editing phase and see where your entered program is different than what has
been shown here. The two must match exactly. Then, come back to this phase; hopefully,
your program will compile successfully (no error messages).

As we progress through this book, we'll add more compiler options to the cc command to
make our life easier.

Running your first C program
Your hello1.c program successfully compiled and you now have an a.out file in the
same directory. It's time to run it! Let's get started:

In a Terminal, command line, or console window (depending on your OS),1.
navigate to the directory that holds a.out.
At the command prompt, usually indicated by a $ in the first column,2.
enter ./a.out.
You should see Hello, world!.3.
If you see that, we can now verify the output of your program.4.
Note that the command prompt, $, is not on the same line as Hello, world!.5.
This means you correctly entered \n in the output stream. If not, you need to re-
edit hello1.c and make sure \n occurs immediately preceding the second ",
recompile it, and rerun a.out.
If Hello, world! is on a line by itself with a command prompt before and after6.
it – woohoo! You did it!

It's always important to remember to do a little dance, and make a little joy, get down
tonight! when you've successfully completed something. Programming can be very
frustrating, so remembering to celebrate even your small successes will make your life a
little bit more joyful through all the frustration. Too many programmers forget this
incremental and regular step of celebrating with joy!

Running Hello, World! Chapter 1

[27]

Writing comments to clarify the program
later
A lot about writing good code is writing code in a consistent manner. Consistency makes it
somewhat easier for the reader (or you) to comprehend at a later time. Consistency is most
often a good thing. However, there may be times where we need to step out of that
consistency, and for some good reason, when we write code, that code is particularly
twisted or obtuse and difficult to understand. Or, we might write code a certain way that
may not be obvious or may not be expected, again for good reason. It is in these
circumstances we should comment on our code – not for the compiler, but for ourselves
and for others who may be reading our code at a later date, scratching our/their foreheads
thinking, "What? What did I/they intend to do here?"

Code comments are the way to provide an explanation of why a particular piece of code is
written in a certain way. Let's explore some of the different ways we can write code
comments in C.

Comments in code, when done correctly, are ignored by the compiler. They are only for
human edification. Consider the following code comments:

/* (1) A single-line C-style comment. */

/* (2) A multi-line
 C-style comment. */

/*
 * (3) A very common way to
 * format a multi-line
 * C-Style comment.
 */

/* (4) C-style comments can appear almost anywhere. */

/*(5)*/ printf(/* Say hello. */ "Hello, world!\n");

/*(6)*/ printf("Hello, world!\n"); /* Yay! */

// (7) A C++ style comment (terminated by End-of-Line).

 printf("Hello, world!\n"); // (8) Say hello; yay!

//
// (9) A more common way
// of commenting with multi-line

Running Hello, World! Chapter 1

[28]

// C++ style comments
//

// (10) anything can appear after //, even /* ... */ and
// even more // after the first // but they will be
// ignored because they are all in the comment.

The comments illustrated in the preceding code are not particularly useful comments, but
they show various ways comments in C can be employed.

Comments with tags (1) – (6) are old-style C comments. The rules for these are simple –
when a /* is encountered, it is a comment until a */ is subsequently encountered, whether
it appears on the same line or several lines later. / * (with a space between them) and * /
(with a space between them) are not valid comment indicators.

C comments that have been adopted from C++ are shown with tags (7) through (10).
When a // is encountered, it is a comment until an End Of Line (EOL) is encountered.
Therefore, these comments cannot appear anywhere like C comments can. Likewise, / /
(with a space between them) is not a valid comment indicator.

C comments are more flexible, while C++ style comments are more obvious. Both styles are
useful. We'll use both throughout this book.

Some guidelines on commenting code
One of the best guidelines for commenting in code is the same guideline to follow in life.
This is sometimes called the Goldilocks Principle, also known as the Three Bears
Principle, named after the children's fairy tale, Goldilocks and the Three Bears. The essence of
this guideline is not too much; not too little; just right. However, just right is subjective,
depends on several factors, and will be different for each situation. Your own judgment and
experience must be your guide to your Goldilock's moment.

These are essential guidelines to follow when commenting your code:

Assume the reader already knows the language: You are not teaching your
reader how to code. Do not explain the obvious features of the language. You are
explaining the non-obvious aspects of your code.
Write in full sentences with proper capitalization and punctuation: Comments
are not code. They are the words you are writing to yourself or to other readers
of your code. Your comments will be much less cryptic and more easily
understood if you follow this guideline.

Running Hello, World! Chapter 1

[29]

Comment on unusual uses of the language: Every language has oddities and
idiosyncrasies that may not be used often or may be used in unexpected ways.
These should be clarified and highlighted.
Try to comment in a way that is resilient to code changes: Very often, as code
changes, comments are not necessarily updated to match. One way to mitigate
this is to put comments in globs at the beginning of functions or to precede blocks
of code rather than them being interspersed within code blocks so that if those
change, the comments are still valid. You will see examples of this throughout
this book.
Comment at a high level: Describe the intent of the code and the way it attempts
to solve a problem. This guideline goes hand in hand with the first guideline we
mentioned. The higher the level the comments are describing, the less likely they
will need to be changed as the code changes.
Convey your intent: With your comments, strive to convey the intent of the code
you are writing, why the code is needed, and what the code is trying to
accomplish. What the code is actually doing should come from the code itself.

I am often surprised when I revisit code I wrote 6 months ago. Too often I find that I am
scratching my head asking, why did I do this? or, what was I thinking here? (both cases of too
little commenting). I also find that when I change code, I have to delete many comments
that are no longer necessary (a case of too much commenting). I rarely find that I have
commented too much when I have focused on the intent of the code (what was I trying to
do here).

At one point in my career, I came across a programmer whose comments were completely
divorced from the code that was there. I concluded that this programmer initially intended
their algorithm to work one way, but then modified the code so significantly that the
comments no longer matched the actual code at all. When I saw that programmer's name in
subsequent code, after careful inspection, I more often than not simply deleted the code
comments because I found them to be irrelevant. Please do not do this unless you are
absolutely certain you understand the code and that the comments do not match the code.

Learning how to effectively comment on code is a lifelong challenge. I do not suppose you
will learn this quickly. You will learn this after years of examining your own code and
making your code clearer to yourself, let alone making your code clearer to others. As we
work through various C example programs, I intend to demonstrate a variety of useful and
resilient commenting techniques.

Running Hello, World! Chapter 1

[30]

Adding comments to the Hello, world! program
Now that we have explored the various ways we can comment on code and commenting
styles, let's copy hello1.c to hello2.c and add appropriate comments.

You can either copy hello1.c to hello2.c with your command interpreter or, in your
editor, open hello1.c and immediately save it as hello2.c. Regardless of how you do
this, you should have both hello1.c and hello2.c in your Chapter1_HelloWorld
directory.

In your editor, modify hello2.c so that it looks as follows:

/*
 * hello2.c
 * My first C program with comments.
 * by <your name>
 * created yyyy/mm/dd
 */

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

/* eof */

Note how the * at the beginning of each line providing a comment makes it clear that there
are several lines of comments in a group; the group begins with /* and eventually ends
with */. Compile, run, and verify this program. Be certain you haven't introduced an
accidental character here or there, which is always possible and should always be verified.

This is now a complete program. We know from the evidence from hello1.c that the
program is correct – it displays our intended message in the way we desire. The first six
lines of comments provide minimal information about the program's author and the date it
was written. This program's heading information may be simple or it may be more
comprehensive. For now, we will keep such heading information simple.

The program itself is so simple that anyone who understands C would know that a simple
message is printed. No further commenting is needed here.

Running Hello, World! Chapter 1

[31]

Finally, we mark the end of the file with a comment; the only benefit to such a marking is
when there are multiple editor windows open and/or programs get very long. This simple
demarcation lets humans know we're at the EOF. This final EOF indicator is entirely
optional and becomes more of a stylistic preference than a practice with rigorous rationale.

I have found that in every programming language I have used, my commenting style has
adapted to the clarity or obtuseness of the given language. When I programmed in
assembler language at university or later in an early version of Fortran 4, I commented on
almost every line. But for C++ or Objective-C, I found I comment only sparsely or in
globs – large sections of comments that explain a concept or programming solution.

Furthermore, even within a given language, when the problem being solved is unusual or I
am using a novel approach to its solution, more comments are in order.

In the remainder of this book, depending on the code sample, we'll explore various useful
commenting practices that are effective, even when the code is subject to change.

Learning to experiment with code
After we have gotten our basic program to work (woohoo!) we can now turn to learn how
to intentionally break it (ouch!) so that we can learn more about what the compiler is trying
to tell us. What it is telling us isn't always clear, especially as we are learning.

Once you have mastered the language, there would be little need to do this (yay!). While
we are learning the language, however, becoming familiar with the various kinds of
compiler error messages is essential and will ultimately save us many hours/weeks of
debugging, which may have been prevented early on in the iterative program development
cycle. Please do not skip this essential step as you learn C as it will save you many
hours/weeks.

So, using the full program development cycle outlined previously, inject the following
errors into your source file. When you see the error messages, try to correlate them with
what you just did to cause them. After each one, correct the error and recompile it to verify
the fix:

Remove { from hello2.c. Save it and compile it. What errors does the compiler
give?
Put { back in its appropriate place and remove }. What errors does the compiler
give?

Running Hello, World! Chapter 1

[32]

There are three other paired punctuation marks: <>, (), which occurs twice, and
 "". What errors does the compiler give when you remove the opening of the
pair and the closing of the pair? Put them back after each experiment.
Remove ; from either line. What error messages does the compiler give?
Comment out the line return 0; What error messages does the compiler give?
Change int main() to int MAIN(). What does the compiler tell you?
Similarly, change printf(to printout(. With this error, you should see what
linker messages look like.
Now, comment out #include <stdio.h>. You should also see linker errors
telling you it can't find the printf() function.
Return hello2.c to its original state. Compile, run, and verify the program is
both correct and complete.

If you get more than 23 thousand lines of error messages from the compiler, I would really
like to know. Please email me with the details of your experiments.

Summary
Whew!

You've learned an enormous amount about the program development cycle and setting up
your C development environment in this chapter. Getting Hello, world! to compile and run
is a far larger accomplishment for beginners than they might imagine. You have a working
text editor, a working compiler, and you've begun manipulating programs in a command-
line interpreter. You have probably experienced frustration to an extent you've rarely
experienced before. I, like many programmers before you, feel your pain. We have all lived
that pain. And with luck, I'm here to help take away some of that pain. In the rest of this
book, we'll explore ways to optimize this whole experience.

You have begun to learn that programming is about solving problems. While we haven't
solved many interesting programming problems yet, you are just beginning your journey
from simple programs and problems to far more complex programs and problems. We'll
encounter a few of these later.

Furthermore, you are now aware of ways to make your programs clearer to both yourself
– especially months after you've written the code – and to others who might later be tasked
with modifying your code for new demands.

Running Hello, World! Chapter 1

[33]

To be sure, getting a C++, C#, Objective-C, or JavaScript environment up and running
would be similar yet subtly different.

In the next chapter, we will go into much more detail about how Hello, world! works and
then modify it in some interesting ways to learn about statements, blocks, and functions
– the building blocks of larger and more interesting programs.

Woohoo! You did it! Isn't programming fun?

2
Understanding Program

Structure
A C program, as in most programming languages, consists of a sequence of small,
individual pieces of computational work called statements, which are formed into larger
building blocks called functions, which are then compiled into a single program. As we
examine these programming elements, we will expand on the main() function, which we
encountered in the previous chapter.

The following topics will be covered in this chapter:

Introducing the building blocks of programs – statements and blocks
Introducing the various kinds of C statements
Understanding delimiters
Using whitespace to make your program easier to read for humans
Introducing functions and their parts
Learning how a computer reads a C program as it runs
Creating various kinds of functions with parameters and return values
Learning how to declare a function for use anywhere in a source file

Let's get started with the chapter!

Understanding Program Structure Chapter 2

[35]

Technical requirements
Throughout the rest of this book, unless otherwise mentioned, you will continue to use
your computer with the following:

A plaintext editor of your choice
A console, terminal, or command-line window (depending on your OS)
A compiler—either the GNU Compiler Collection (GCC) or Clang (clang) for
your particular OS

For consistency, it is best if you use the same computer and programming tools for all of the
exercises. By doing so, you can focus more closely on the details of C on your computer.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming. Continue to type in the source code completely yourself and get
your version of the programs to run it correctly.

Introducing statements and blocks
Before we begin to explore the details of statements, let's return to the various uses of
punctuation that we encountered in our Hello, world! program. Here is the program for
reference; comments have been removed so that we can concentrate on the details of the
code itself:

#include<stdio.h>
int main() {
 printf("Hello, world!\n");
 return 0;
}

At first, I'd like to draw your attention to the paired punctuation—the punctuation that
occurs with a beginning mark and a very similar ending mark. Going through it line by
line, we see the following pairs—< and >, (and) (which occur twice), { and }, and
finally, " and ". We also see some other punctuation that may or not be familiar to you.
These are #, ., ;, \, <space>, and <newline>. These are punctuation marks that are
significant in the C language.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Understanding Program Structure Chapter 2

[36]

When we look closely at our "Hello, world!\n" greeting, we can see the beginning
" character and the end " character. Everything between them is part of what will be
printed to the console. Therefore, there are two punctuation marks that we can basically
ignore—, and !. We can ignore the comma and the exclamation point contained between "
and " because, as we have already seen, these are printed out to the screen as part of our
greeting. The characters between" and " represent a sequence of characters, or a string, to
be displayed on the console. However, \ is a punctuation mark that has special significance
when part of a string.

Note, on your keyboard, the location of two different punctuation marks—/, or forward
slash, and \, or backward slash (also known as backslash). As you read from left to right,
the forward slash falls forward while the backslash falls backward; hence their names. They
have different uses in C. As we have seen with C++-style comments, two // characters
constitute the beginning of a comment, terminated by the <newline> character. We'll come
back to <newline> in a moment. However, if any other character occurs between //, then
we do not have a C++-style comment; we have something else. A digraph in C is a two-
character sequence, which means something more than either of the characters alone. Care
must be exercised to ensure the digraph of two / characters is preserved; otherwise, the
compiler will interpret this as something other than a C++-style comment.

In our greeting string, we can see the \n digraph, which represents the <newline>
character to be output to the console. We must distinguish the <newline> character, \n,
from the <carriage return> character, \r. We'll learn about many more of these
digraphs when we explore output formatting in Chapter 19, Exploring Formatted Output,
and Chapter 21, Exploring Formatted Input. On some computer systems, to get a new
line—advance one line down and return to the beginning of the line—\n is used (on Linux,
Unix, and macOS). On others, \r is used (on some versions of Unix and other OSes). Yet,
on others, both \r\n are used together (on Windows). These digraphs are intended to
reflect the operation of manual typewriters. Manual typewriters have a carriage with a
rotating platter and a return lever. When the return lever is manipulated, it first rotates the
platter, giving a line feed, or a new line. Then, the lever is forcibly pushed to the left and the
carriage is returned to its beginning position—hence, carriage return. Most often, these two
actions are combined into one swift and firm movement—new line and carriage return.

Understanding Program Structure Chapter 2

[37]

Experimenting with statements and blocks
What happens on your system when you replace \n with \r? The most likely result is that
it will appear as if no greeting was printed at all. If that is the case, what actually happened
is the text printing focus went back to the beginning of the line but the line was not
advanced; the console prompt wrote over it, wiping out our greeting. If you want to
advance to the next line without returning to the beginning of the line, try the <linefeed>
character, or \v.

Digraphs that appear in strings are also called escape sequences because they escape from
the normal meaning of each single character. They all begin with the backslash (\)
character. The following table shows the legal C digraphs:

Symbol Meaning
\a Alert
\b Backspace
\f Form feed (or page advance)
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\' Single quote
\" Double quote
\? Question mark
\\ Backslash itself

Even though escape sequences appear as two characters, they are actually a single, non-
visible character. Here are some examples:

"Hello, world without a new line"
"Hello, world with a new line\n"
"A string with \"quoted text\" inside of it"
"Tabbed\tColumn\tHeadings"
"A line of text that\nspans three lines\nand completes the line\n"

Understanding Program Structure Chapter 2

[38]

To see how this works, create a file called printingExcapeSequences.c and edit/type the
following program:

#include <stdio.h>

int main(void) {
 printf("Hello, world without a new line");
 printf("Hello, world with a new line\n");
 printf("A string with \"quoted text\" inside of it\n\n");
 printf("Tabbed\tColumn\tHeadings\n");
 printf("The\tquick\tbrown\n");
 printf("fox\tjumps\tover\n");
 printf("the\tlazy\tdog.\n\n");
 printf("A line of text that\nspans three lines\nand completes the
 line\n\n");
 return 0;
}

This program is a series of printf() statements that each writes a string to the console.
Note the use of the <newline> character, \n, that typically appears at the end of a string
but can appear anywhere in it or not at all. In the third string, an escape sequence, \", is
used to print the " character in the output string. Notice how tabs, \t, can be embedded
into any string.

When you have typed in this program, save it. Compile and run it in a console window
using the following commands:

cc printingEscapeSequences.c <return>
a.out<return>

You should see the following output:

Understanding Program Structure Chapter 2

[39]

As you examine the output, see whether you can correlate the printf() strings to what
you see in the console. Notice what happens when there is no \n character in an output
string, the quotation marks within an output string, and what \n\n looks like. Finally,
notice how \t can be used to align columns of text.

We use the printf() function extensively to output strings to the console. Much later, in
Chapter 24, Working with Multi-File Programs, we will use a variant of printf() to output
strings to a file for permanent storage.

Understanding delimiters
Delimiters are characters used to separate smaller parts of the program from one another.
These smaller parts are called tokens. A token is the smallest complete C language
element. A token is either a single character or a sequence of characters predefined by the C
language, such as int or return, or a sequence of characters/words defined by us, which
we will learn about later. When a token is predefined by C, it cannot be used except in a
prescribed way. These tokens are called keywords. Four keywords we have already
encountered are include, int, main, and return. We will encounter many others
throughout the course of this chapter.

Again, here is the Hello, world! program for reference:

#include<stdio.h>
int main() {
 printf("Hello, world!\n");
 return 0;
}

There are three types of delimiters that we will explore here:

Single delimiters: ; and <space>
Paired, symmetric delimiters: <>, (), {}, and ""
Asymmetric delimiters that begin with one character and end with another: #
and <newline> and // and <newline>

Each of these has a specific use. Most of them have unique and unambiguous uses. That is,
when you see them, they can mean one thing and only one thing. Others have slightly
different meanings when they appear in different contexts.

Understanding Program Structure Chapter 2

[40]

In our Hello, world! program, there are only two required <space> characters that are
delimiters. We see a delimiting space here, between int and main():

int main()

We also see a delimiting space here, between return and the value being returned—in this
case, 0:

return 0;

In these cases, the <space> character is used to separate one keyword or token from
another. A keyword is a predefined word that has a special meaning. It is reserved because
it cannot be used elsewhere for some other meaning or purpose. int, main(),
and return are all keywords and tokens. 0 and ; are tokens; one is a literal value and the
other is a delimiter. The compiler identifies and translates tokens into machine language as
appropriate. Delimiters, including <space>, facilitate interpreting text in the program
compilation stream into tokens. Otherwise, when spaces are not needed to separate tokens,
they are optional and are considered whitespace.

You can see the paired symmetric delimiters from the list of types of delimiters. One always
begins a particular sequence and the other always ends it. <> is used for a specific type of
filename, which tells the compiler how to search for the given file. () indicates that the
token is associated with a function name; we'll explore this more shortly. {} indicates a
block that groups one or more statements together into a single unit; we will explore
statements later. Finally, "" indicates the beginning and end of a sequence of characters,
also referred to as a string.

Lastly, we'll consider the first line, which begins with # and ends with <newline>. This is
an asymmetric delimiter pair. This particular line is a preprocessor directive. The
preprocessor is the very first part of the compiler phase where directives are interpreted. In
this case, the file named stdio.h is searched and inserted into the program compilation
stream, or included, just as if the file had been typed into our program. To direct the
compiler to insert it, we only need to specify its filename; the compiler has a predefined set
of locations to look for it. The compiler finds it and opens and reads it into the stream. If it
cannot find it, an error is reported.

Understanding Program Structure Chapter 2

[41]

This #include mechanism allows a single file to be used instead of manually copying the
contents of this file into each and every source file that needs it. If the stdio.h file changes,
all programs that use it can simply be recompiled to pick up the new changes. Otherwise,
any changes to any version of the copied text of stdio.h would have to also be made in
every file that also copied its contents directly. We will encounter many of these
files—those that are part of the Standard Library and those we create—as we begin to make
our programs more complex and useful.

Now, with our understanding of delimiters, we can remove all the extraneous spaces, tabs,
and new lines. We can pare it down to just keywords, tokens, and delimiters. Our program,
hello_nowhitespace.c, would look like this:

#include<stdio.h>
int main(){printf("Hello, world!\n");return 0;}

Create a new file called hello_nowhitespace.c, type this in, save it, compile it, run it,
and verify that its output is as before. Note that we do not remove the space in our string
message; that part of the program is intended for humans.

Is this good programming practice? In a word—never.

You might think that a practice like this would somehow save space on your computer's
hard drive/SSD; in reality, the space-saving is insignificant, especially when compared to
the added human time needed to understand and modify such a program.

It is a basic fact of programming that programs are read many tens of times more often than
they are created or modified. In reality, every line of code is read at least 20 times over its
lifetime. You may find that you re-read your own programs several times before you
consider changing them or reusing them. Others will read your programs with or without
your knowledge. Therefore, while we pay attention to the rules of the compiler and strive
to write complete and correct programs, we also strive to write clear programs for other
humans to understand. This not only means using comments effectively but also using
whitespace effectively.

Understanding whitespace
When a <space> or <newline> character is not required to delimit a portion of C code, it is
considered whitespace. Whitespace can also be <tab>, <carriage return>, and some
other obscure characters. However, the use of tabs in C source files is discouraged since the
program listing may look different on someone else's computer or when the source code is
printed, thereby diminishing clarity and obfuscating your original intent.

Understanding Program Structure Chapter 2

[42]

Always use spaces instead of tabs in your source code files.

We write <newline> to mean the start of a new line, which has the same effect as hitting
Enter on your keyboard. <space> similarly is the same as hitting the spacebar at the bottom
of your keyboard.

There are many opinions by as many programmers on how to effectively use whitespace.
Some programmers feel strongly about using two spaces to indent a line while others are
vehement about using four spaces. Others don't care one way or the other. In reality, there
is no one correct way to do it. As you write more of your own programs and read those of
others, you should pay attention to whitespace styles to try to get a sense of what is
effective and what you might prefer.

Consistency in code formatting, including whitespace, is more important than you might
think. Consistent code helps set the code reader's expectations, making the code easier to
read, and hence to comprehend. Inconsistent whitespace formatting can make the code
harder to read and, consequently, introduce coding errors and bugs.

Here is an example of inconsistent and inappropriate use of whitespace. It is from our Hello,
world! program, but with excessive and nonsensical whitespace added:

include <stdio.h>

int
main
(
)
{
 printf
 (
 "Hello, world!\n"

)
;
 return
 0
 ;
}

Understanding Program Structure Chapter 2

[43]

Note that this is still a valid C program. It will compile and run and provide the same
output as before. The C compiler ignores whitespace.

Because this is an example of bad practice, you do not have to type this in yourself. In the
remaining programs in this book, all source code will be presented with both consistent
whitespace usage as well as consistent commenting style. You don't have to adopt these
stylistic guidelines, but you should pay attention to them and compare them to other styles.
Whatever style you choose, apply it consistently in your code.

When you are paid to create or modify programs for another individual or for a company,
they may have a set of style guides for you to follow. Strive to follow them. More than
likely, however, they will not have a set of style guides; the coding style guidelines will be
embodied in their existing repository of programs. Here, again, strive to follow the coding
styles in the existing code you are modifying. This consistency makes the programs easier
to read and faster to comprehend for later programmers.

Some programming teams employ source code pretty-printers where each programmer
runs their source code through a special program that reads their source file, reformats it
according to preset formatting rules, and writes it out in the new format; the language
functionality is unchanged. In this manner, all source code looks the same, regardless of
who wrote it, since the style guidelines are enforced through the program's single set of
rules. Every programmer can then read the formatted source code as if anyone had written
it. They can focus on the code itself and not be distracted by various coding styles.

Here is a table of the delimiters that we have already encountered in our simple program:

Symbol Symbol Name Symbol Use
<space> Space Basic token separator or whitespace

<newline> Newline Terminating deliminator for preprocessor directives and
C++-style comments or whitespace

; Semi-colon Statement terminator
// Double forward slash Beginning of a C++-style comment
Octothorp, or hash Beginning of a preprocessor directive

< > Angle brackets Filename delimiters used in preprocessor directive, when
used in pairs

{ } Curly brackets, or braces Block delimiters

()
Rounded brackets, more
commonly known as
parentheses

Function parameter delimiters. Also used for expression
grouping (see Chapter 5, Exploring Operators and
Expressions)

" " Double quotation marks
String delimiters or filename delimiters in preprocessor
directives for multiple characters (see Chapter 15, Working
With Strings)

Understanding Program Structure Chapter 2

[44]

' ' Single quotation marks
Character delimiters for single characters (see Chapter
15, Working with Strings)

[] Square brackets Array notation (see Chapter 11, Working with Arrays)

We will see later that some of these punctuation marks have different meanings when used
in different contexts. When their use is not as a delimiter, their alternate meaning will be
clear from the context. For instance, < is the less than logical operator and will occur alone
when it has that meaning. For completeness, we have included the delimiters to indicate an
array, which is square brackets; we will encounter them in later chapters.

We are now ready to explore how these delimiters are used in various types of C
statements.

Introducing statements
Statements in C are the basic building blocks of programs; each statement forms a complete
unit of computational logic. There are many types of statements and they are made up of a
wide variety of elements:

Simple statements: End with ;. return 0; is a simple statement.
Block statements: Begin with { and end with }. They contain and group other
statements. Here, we represent them as { … }, where … represents one or
more statements of any type of valid statement.
Complex statements: On the other hand, these consist of a keyword and one or
more block statements. main(){…} is a complex statement; it has
the main keyword and other pre-defined elements, including a block statement.
Complex statements include functions (which are covered in this chapter),
control statements (covered in Chapter 6, Exploring Conditional Program Flow),
and looping statements (covered in Chapter 7, Exploring Loops and Iteration).
Compound statements: These are made up of simple statements and/or complex
statements that consist of multiple statements. The body of our program is a
compound block statement that consists of two statements—a call to printf();
and a return 0; statement.

Understanding Program Structure Chapter 2

[45]

In our Hello, world! program, the following are the kinds of statements we have already
encountered:

Preprocessor directive: This begins with # and ends with <newline>. It isn't
really a C statement that performs computation; instead, it is a command to the
compiler to process our C file in a specified way. Preprocessor directives do not
follow C syntax and formatting but they are included in the language; we can
think of them as outside of C syntax. They direct the compiler to do extra,
preparatory stuff before the compiler gets down to the actual work of compiling
the program.
Function statement: The main() function, which is where our program begins
executing, is really a pre-defined name for a more general function statement. By
adding statements to main(), we define our program. Every executable C
program must have one—and only one—main() function defined. It is a
complex statement. We will also define our own function statements—or, more
simply stated, our own functions.
Function call statement: This is a simple statement. Just as main() is called by
the system to execute, we can call functions that have already been defined or
that we are defined in our program. In this case, we call the pre-
defined printf() function to do some of the work for us. When we call a
function, execution of the current statement of the current function is suspended
and the execution jumps into the called function and continues in that function.
Return statement: This is a simple statement that causes execution in the current
function to end; execution then returns to the caller. In the main() function,
when return is encountered, our program ends and control returns to the
system.
 Block statement: A block statement is a compound statement that consists of
one or more statements enclosed in { }. Block statements are required for
function statements and control statements—we will call these named
blocks—and have a well-defined structure. However, we can also group
statements together into unnamed blocks to organize multiple statements into
related units of computation. Unnamed blocks have a simple structure and can
appear anywhere that a statement can appear. We'll explore this in greater depth
in Chapter 25, Understanding Scope. Until then, our use of scoping rules will be
both simple and intuitively obvious.

Understanding Program Structure Chapter 2

[46]

For completeness, here are the other statement types that we will encounter later:

Control statements: These include if {} else {}, goto, break,
and continue. Thereturn statement is also a control statement. Like a call
statement function, these change the order of execution of statements within a
function. Each has a well-defined structure. We'll explore these further in
Chapter 6, Exploring Conditional Program Flow.
Looping statements: These include while()…, do()… while, and for()….
They are similar to control statements but their primary purpose is to iterate; that
is, to perform a statement 0 or more times. We'll explore these further in Chapter
7, Exploring Loops and Iteration.
Expression statements: These are simple statements that evaluate expressions
and return some kind of result or value. We'll examine these in Chapter 5,
Exploring Operators and Expressions.

Except for control, looping, and the wide variety of expression statements, we have already
encountered the essential C program statements that make up the bulk of our C programs.

We will now explore them further.

Introducing functions
Functions are callable segments of program code that perform one or more statements of
related computational work. Functions group statements into a cohesive set of instructions
that perform a specific, complex task. This may comprise a single statement, only a few
statements, or many statements. Functions can also call other functions. Functions, made up
of one or more statements, are the next, higher-up, more-complex units of program
composition. Statements make functions; functions make programs. Indeed, main() is a
function made of statements and other functions.

The process of writing programs—or rather, solving a given problem—with a computer
program is primarily the task of breaking the problem down into smaller pieces—into
functions—and focusing on the work to be done in each smaller piece. When we break a
problem down into smaller parts, we can more easily see the essence of the problem. We
can focus our attention either on aspects of the larger problem or on the fine details of the
subdivided problem pieces.

Understanding Program Structure Chapter 2

[47]

We may be able to reuse a single problem piece—or function—so that we don't have to
copy and paste it throughout the program whenever it is needed again. Anytime a function
changes, we change it in only one place. If we discover that a function does not cover all the
cases we originally expected, we can either expand its functionality, add a similar function
to provide a slightly different solution, or further break the function down into smaller
functions.

This approach is preferable to writing one large program without any functions. In many
cases, writing monolithic, large programs without functions can and has been done.
However, each time, a program like this would require modification; it would have to be
understood in toto, so that even a small change might require the entire program to be
considered. When a problem can be expressed so that we can see its major and minor parts,
as implemented in functions, it is most often easier to understand it generally and in its
components, making it, therefore, easier to modify.

So, a major part of solving problems in C is breaking the problem into smaller, functional
parts and writing functions to resolve each of the smaller problems.

Understanding function definitions
Functions, therefore, are an essential part of any C program. Each function that you will
create has the following parts:

Function identifier: This is the name of the function. The name of the function
should match closely to what it actually does.
Function result type or return value type: Functions can return a value to the
caller; the caller may ignore the result. If a return value type is specified, the
function must return a value of that type to the caller.
Function block: A block directly associated with the function name and
parameter list where additional statements are added to perform the work of the
function.
Return statement: The primary mechanism to return a value of the specified type
from the called function to its caller.
Function parameter list: This is an optional list of values that are passed into the
function, which it may use as a part of its calculation.

Let's examine each of these in turn. The goal is for you to begin to recognize, understand,
and be able to create the function statement pattern for yourself. We'll use the absolute
minimum C program with main() as our example function and highlight each essential
part.

Understanding Program Structure Chapter 2

[48]

The function type, function identifier, and function parameter list comprise a function
signature. In a C program, each function identifier must be unique. In other languages, the
complete function signature is considered, but not in C. When a function is called, only its
function identifier is considered.

Once a function has been defined with a function identifier, that function identifier cannot
be redefined with a different function result type or function parameter list. Each function
identifier in C must be unique.

Note that function signatures are not used in C to uniquely identify a function. Therefore,
two functions with the same identifier but with different parameter lists or result types will
cause a compilation to fail.

Exploring function identifiers
So, main() is a function just like any other function. However, it does have some
significant differences—the main function identifier is reserved. The signature for it is also
pre-defined in two specific ways. You cannot name any other function in your program
main. Your program can never call main itself; main can only be called by the system.

Function identifiers should be descriptive of their purpose. You would expect the function
named printGreeting() to print a greeting, as its name implies. Likewise, you would
expect a function named printWord() to print a single word. Naming functions to match
their purpose is a good programming practice. Naming functions any other way, say
Moe(), Larry(), and Curly(), gives no real indication of what they do, even if somehow
in your conception these three functions are related; this would be considered very bad
programming practice.

Function identifiers are case sensitive. This means main, MAIN, Main, and maiN are all
different function names. It is never a good idea to write function names all in uppercase
since the shape of the word is lost. All uppercase text is extremely difficult to read and
should, therefore, be avoided if possible. In fact, every identifier in C is case sensitive. This
guideline, therefore, applies to every other C identifier, too.

An exception to using all uppercase names is for names used in preprocessor directives.
Here, by convention, preprocessor directive names tend to take all uppercase separated by
underscores. This is a historical convention. It is best to avoid all uppercase identifiers in
your C code and to leave this convention to the domain of the preprocessor. Separating
uppercase/preprocessor names from lowercase/program identifiers makes it clearer to the
reader of the program which identifiers are handled by the preprocessor and which are
actual C program identifiers.

Understanding Program Structure Chapter 2

[49]

When two functions have a similar purpose but are slightly different, do not rely on
differences in the upper or lowercase of their names to differentiate them. It is far better to
make them slightly different in length or use different modifiers in their name. For instance,
if we had three functions to change the color of some text to three different shades of green,
a poor naming choice would be makegreen(), makeGreen(), and makeGREEN()(where
the capitalization here seems to imply the intensity of the color green). A better choice that
explicitly conveys their purpose would be makeLightGreen(), makeGreen(), and
makeDarkGreen(), respectively.

Two common methods to make function names descriptive yet easy to read are camel-case
and underscore-separated, also known as snake-case. Camel-case names have the
beginning characters of words within the name capitalized. In underscore-separated names,
_ is used between words:

All-lowercase: makelightgreen(), makemediumgreen(), and
makedarkgreen().
Camel-case: makeLightGreen(), makeMediumGreen(),
and makeDarkGreen().
Snake-case (or underscore-separated): make_light_green(),
make_medium_green(), and make_dark_green().

As you can see, the all-lowercase names are somewhat difficult to read. However, these are
not nearly as difficult to read as all-uppercase names. The other two ways are quite a bit
easier to read. Therefore, it is better to use either of the last two.

If you choose one identifier naming convention, stick to it throughout your program. Do
not mix different identifier naming schemes as this makes remembering the exact name of
function identifiers, as well as other identifiers, much more difficult and error-prone.

Exploring the function block
The function block is where the work of the function happens.

Within the function block are one or more statements. In our Hello, world! main function,
there are only two statements. In the following program, main.c, there is only one—the
return 0; statement:

int main() {
 return 0;
}

Understanding Program Structure Chapter 2

[50]

While there is no ideal size, large or small, for the number of statements in a function block,
typically, functions that are no longer than either the number of lines in a terminal, 25 lines,
or a printed page, say 60 lines, are preferable to much longer functions. The Goldilocks
target—given multiple options, the one Goldilocks in the fairy tale Goldilocks and the Three
Bears would have chosen—in this case, would be somewhere between 25 and 50 lines.
Shorter functions are most often preferred over much longer ones.

In some cases, however, longer functions are warranted. Rarely, if ever, are they considered
good programming practice. The objective is to break the problem into meaningful
subproblems and solve each one independently of the larger problem. By keeping functions
small, the subproblem can be quickly grasped and solved.

Exploring function return values
A function statement can return a value to its caller. It does so from within its function
block. The caller is not required to use the returned value and can ignore it. In Hello, world!,
the printf() function call actually does return a value but we ignore it.

When a function statement is specified with a return type, then it must return a value of
that type. Such a specification consists of two parts:

The return type of the function, given before the name of the function
The return value, which is of the same type as the return type

In main.c, int—short for integer or whole number—is the type specified that
the main() function must return to its caller. Immediately before the closing brace, we find
the return 0; statement, which returns the 0 integer value. In most OS system calls (such
as Unix, Linux, macOS, and Windows), a return value of 0 by convention typically means
no error is encountered.

If the return type of a function is void instead of int or some other type, there is no return
value. The return statement is optional. Consider the following two functions:

void printComma() {
 ...
 return;
}

int main() {
 ...
 return 0;
 }

Understanding Program Structure Chapter 2

[51]

We have defined the printComma() function with a void return type. A void return type,
in this context, means no return value, or nothing is to be returned. In the function body,
there is an explicit return statement. However, this return statement is actually optional; it
is implied when the closing brace of the function body is encountered and execution
returns to the caller. Note that the printComma() function has a return type of void;
therefore, the return; statement provides no value in it.

In the following program, hello2.c, return is expressed explicitly:

#include <stdio.h>

void printComma() {
 printf(", ");
 return;
}

int main() {
 printf("Hello");
 printComma();
 printf("world!\n");
 return 0;
}

In the hello2.c program, we have a function whose purpose is only to print a comma and
space to the console. Type out this program. Compile, run, and verify it. Verification should
be familiar now since we are creating the same output. Clearly, by itself this is not a
particularly useful function.

Our intent is to focus on moving from a single statement in our original Hello,
world! program to a program that employs a number of functions to do the same thing. In
each case, the output will be the same. In this chapter, focus on the mechanism of the
function, not the actual utility of the function just yet. As we expand our knowledge of C,
our functions will become more useful and more relevant.

A recent development in C is that return 0; is optional. If there is no return; or return
0; statement, then the value of 0 is assumed to be returned by the function. This, by
convention, means everything is executed normally and all is well. With this in mind, the
modern, minimal main() function now becomes the following:

int main() {
}

Understanding Program Structure Chapter 2

[52]

The previous main() function becomes the following:

int main() {
 printf("Hello");
 printComma();
 printf("world!\n");
}

We will follow this convention throughout our programs.

For functions that do return result codes, it is good programming practice to capture them
and act on them if an error does occur. We will see how to do this in Chapter 4, Using
Variables and Assignment, and Chapter 6, Exploring Conditional Program Flow.

Passing in values with function parameters
A function can be values given as input to the function. It can then use them within the
function body. When the function is defined, the type and number of parameters that can
be passed in or received by the functions are specified. When the function is called, the
values of the parameters are given. The function call parameters must match the type and
number of parameters specified. In other words, the function signature must match both
the caller of the function and the called function.

We have already encountered a function that takes a parameter—the printf("Hello,
world!\n"); function call. Here, the parameter is a string with the "Hello,
world!\n" value. It could be almost any string, as long it is delimited by "".

Function parameters are specified in the function definition between the (…) delimiters.
The ellipsis indicates that there can be zero or more function parameters in the parameter
list, separated by commas (a C token we haven't yet encountered). When there are no
parameters, the definition looks like (void) or, as shorthand, just (). (void) and () are
equivalent empty parameter lists.

Understanding Program Structure Chapter 2

[53]

Each parameter consists of two parts: a data type and an identifier. The data type specifies
what kind of value is being used—a whole number, a decimal number, a string, and so on.
The identifier is the name used to access the value. Multiple parameters are separated by a
comma. We will explore data types fully in the next chapter. A value identifier is very
similar to a function identifier; where a function name can be called from somewhere, the
parameter identifier is the name by which the passed in value can be accessed within the
function body. Let's look at what parameter lists look like with zero, one, and two
parameters:

void printComma(void) {
 ...
}

void printAGreeting(char* aGreeting) {
 ...
}

void printSalutation(char* aGreeting , char* who) {
 ...
}

Take as given, for the moment, that the C type of a string passed into a function is char*.
This will be introduced in Chapter 3, Working With Basic Data Types. We'll explore this in
much greater detail in Chapter 15, Working With Strings. In each of these function
parameters, focus first on each parameter and then on each part of each parameter.

Within the function body, the parameter can not only be accessed but can also be
manipulated. Any such manipulations on the parameter value are only valid within the
function body. Once the function body ends, the parameter values are discarded.

In the following programs, we can see how to use the parameter values within the function
body:

#include <stdio.h>

void printComma(void) {
 printf(", ");
}

void printWord(char* word) {
 printf("%s" , word);
}

int main() {
 printWord("Hello");
 printComma();

Understanding Program Structure Chapter 2

[54]

 printWord("world");
 printf("!\n");
}

In the two functions defined, because the return type is void, the return; statement is,
therefore, optional and is omitted. In the first function, there are no function parameters, so
the parameter list is void. In the second function, the parameter identifier is word. The
parameter type is char*, which for now we'll take to mean a string. To use word as a string
in the printf() function call, we specify a different kind of escape sequence specific to
the %s printf function, called a format specifier. This specifier says to take the string value
given in the next function parameter—in this case, word—and print it at this location in the
string. We will casually introduce format specifiers as we encounter them; they will be
examined in exhaustive detail in Chapter 19, Exploring Formatted Output.

As before, type in this program, then compile, run, and verify its output. The output should
be Hello, world!, as before.

Now, with these two functions, we can use them to build a more general greeting function
that takes a greeting and an addressee. We could then call this function with two values,
one value for the greeting and the other for who is being greeted. To see how this works,
create a new file named hello4.c and enter the following program:

#include <stdio.h>

void printComma() {
 printf(", ");
}

void printWord(char* word) {
 printf("%s" , word);
}

void printGreeting(char* greeting , char* addressee) {
 printWord(greeting);
 printComma();
 printWord(addressee);
 printf("!\n");
}

int main() {
 printGreeting("Hello" , "world");
 printGreeting("Good day" , "Your Royal Highness");
 printGreeting("Howdy" , "John Q. and Jane P. Doe");
 printGreeting("Hey" , "Moe, Larry, and Joe");
 return 0;
}

Understanding Program Structure Chapter 2

[55]

Again, for now, take as given that the char* parameter type specifies that a string is being
used; this will be explained later. In hello4.c, we have moved the statements from the
body of main into a newly declared function, printGreeting, which takes two parameters
of a string type. Now, we have a function that can be called with different values, which we
saw in the main body. printGreeting() is called four times, each time with two different
string parameters. Note how each string parameter is delimited by "". Also, note how only
one printf() function prints <newline>. Save this program. Compile it and run it. You
should see the following output:

Considering our functions and how they work, we may find that we don't really need
printComma() and printWord(), but we still want to provide a general
printGreeting() function. We will combine printComma() and printWord() into a
single printf() statement with two format specifiers. To do that, copy hello4.c into a
file named hello5.c. Modify hello5.c to look as in the following program:

#include <stdio.h>

void printGreeting(char* greeting , char* who) {
 printf("%s, %s!\n" , greeting , who);
}

int main() {
 printGreeting("Hello" , "world");
 printGreeting("Greetings" , "Your Royal Highness");
 printGreeting("Howdy" , "John Q. and Jane R. Doe");
 printGreeting("Hey" , "Moe, Larry, and Curly");
 return 0;
}

This program is simpler than before; it defines only one function instead of three. Yet, it still
provides a general way to print various greetings via function parameters. Save this file.
Compile and run it. Your output should be identical to that of hello4.c.

Understanding Program Structure Chapter 2

[56]

On the other hand, we may find that we need to break printGreeting() into even
smaller functions. So, let's do this. Copy hello5.c into a file named hello6.c and modify
it to appear as follows:

#include <stdio.h>

void printAGreeting(char* greeting) {
 printf("%s" , greeting);
}

void printAComma(void) {
 printf(", ");
}

void printAnAddressee(char* aName) {
 printf("%s");
}

void printANewLine() {
 printf("\n");
}

void printGreeting(char* aGreeting , char* aName) {
 printAGreeting(aGreeting);
 printAComma();
 printAnAddressee(aName);
 printANewLine();
}

int main() {
 printGreeting("Hi" , "Bub");
 return 0;
}

In hello6.c, there are more, smaller functions to print a greeting. The advantage of doing
is this is to be able to reuse our functions without having to copy one or more statements.
For instance, we could expand our program to not just print a greeting but also print a
variety of sentences, a question, a normal sentence, and so on. An approach such as this
might be appropriate for a program that processes language and generates text. Compile
hello6.c and run it. You should see the following output:

Understanding Program Structure Chapter 2

[57]

That might seem like a lot of functions just to print two words. However, as you can see, we
are able to organize our program in many ways with functions. We can create fewer,
possibly larger, or more general functions or decide to use more, possibly smaller, more
specific functions. We can break functions into one or more other functions and call them as
needed. All of these approaches will depend on the problem to be solved. So, while there
are many different ways to organize a program, there is rarely a single way.

You may be wondering why we define our functions with specific numbers of parameters,
and yet the printf() function can take multiple parameters. This is called a variadic
function. C provides a mechanism to do this. We will not explore this; we will however
touch on it briefly in the appendix with the stdarg.h header file.

In our explanations, to differentiate a function from some other program element, we will
refer to a function with name() (the parentheses after the identifier to indicate it is a
function, where name is the name of the function).

As a means to express the relationship between functions clearly, consider the following:

Functions are called and have a caller, which is the function that called them.
printComma() is called by printGreeting(). printGreeting() is the caller
of printComma().
The called function, or caller, returns to its caller. printComma() returns to
printGreeting(). printGreeting() returns to main().
A function calls another function, the caller, which is the function that is called.
main() calls printGreeting(). printGreeting() calls printAddressee().

Order of execution
When a program executes, it first finds main() and begins executing statements in the
main() function block. Whenever a function call statement is encountered, a number of
actions occur:

If there are function parameters, the actual values found in the function call1.
statement are assigned to the function parameter names.
Program execution jumps to that function and begins executing statements in2.
that function block.

Understanding Program Structure Chapter 2

[58]

Execution continues until either a return statement is encountered or the end of3.
the block is encountered (the closing }).
Execution jumps back, or returns, to the calling function and resumes from that4.
point.

If, in step 2, execution encounters another function call statement, the steps are repeated.

The following diagram illustrates the call/return order of execution when function calls are
encountered. This order of execution cannot be violated. Since it is very bad practice to
jump from within one function to another, C does not allow this:

The following are the steps of execution:

The program is called by the system and begins execution at main().1.
main() calls printGreeting(). Execution jumps to its function block.2.
printGreeting() calls printAGreeting(). Execution jumps to its function3.
block.
printAGreeting() completes its function block and returns back to4.
printGreeting().
printGreeting() then calls printAComma(). Execution jumps to its function5.
block.

Understanding Program Structure Chapter 2

[59]

printAComma() competes its function block and returns back to6.
printGreeting().
printGreeting() then calls printAnAddressee(). Execution jumps to its7.
function block.
printAnAddressee() completes its function block and returns back to8.
printGreeting().
printGreeting() then calls printANewline(). Execution jumps to its9.
function block.
printANewline() completes and returns back to printGreeting().10.
printGreeting() has completed its function block, so it returns to main().11.
main() must return an integer, so the next statement processed is return 0;,12.
which causes main() to complete its execution and return to the system.

In each case, when a function returns, it picks up immediately from where it left off in the
calling function.

If there were any statements after return 0; or a return;, they would never be executed.

You may have noticed that all functions that we have used have been defined before they
were called. What if we wanted to call them in any order? To do that, we need to
understand function declarations.

Understanding function declarations
In order for the compiler to recognize a function call when it sees it, it must already know
about the function. In other words, it must already have processed the function statement's
definition before it can process the call to that function. We have seen this behavior in all of
our programs up to this point. In each program, we have defined the function, and then
later in our program, we called it.

This behavior is somewhat limiting since we may want to call a function from anywhere in
our program. We don't want to get caught up in its relative position in the program and
have to reshuffle the definitions of the functions just to make the compiler happy. The
compiler is supposed to work for us, not the other way around.

Understanding Program Structure Chapter 2

[60]

C provides a way to declare a function so that the compiler knows just enough about the
function to be able to process a call to the function before it actually processes the function
definition. These are called function declarations. They declare to the compiler the function
name, the return type, and the parameter list only. We saw this earlier as the function
signature. Elsewhere, the function definition must exist not only with the same function
name, return type, and parameter list, but also to define the function block. In other words,
the function signature in a function's declaration must match the function's definition as
well as the function when it is called. When function declarations differ from the function
definitions, a compiler error occurs. This is a frequent cause of frustration.

Function declarations are also called function prototypes. In many ways, using the term
function prototypes is less confusing than using the term function declarations; however,
using either phrase is fine. We prefer to use function prototypes since that term is less
similar to a function definition and so causes less confusion. In the hello7.c program,
function prototypes are specified at the beginning of the program, as follows:

#include <stdio.h>

// function prototypes
void printGreeting(char* aGreeting , char* aName);
void printAGreeting(char* greeting);
void printAnAddressee(char* aName);
void printAComma(void);
void printANewLine();

int main() {
 printGreeting("Hi" , "Bub");
 return 0;
}

void printGreeting(char* aGreeting , char* aName) {
 printAGreeting(aGreeting);
 printAComma();
 printAnAddressee(aName);
 printANewLine();
}

void printAGreeting(char* greeting) {
 printf("%s" , greeting);
}

void printAnAddressee(char* aName) {
 printf("%s");
}

Understanding Program Structure Chapter 2

[61]

void printAComma(void) {
 printf(", ");
}

void printANewLine() {
 printf("\n");
}

In hello7.c, we have rearranged the order of the function definitions. In this order,
functions are defined in the order that they are called. An ordering such as this is
sometimes called top-down implementation since the functions that are called first also
appear first in the program file. main() is called first, so that function definition is at the
top. Those that are called later appear later in the file. printANewLine() is called last and
so shows up as the last function defined in the source file. This approach more closely
matches the process of starting with a whole problem and breaking it down into smaller
parts. Our previous programs are ordered in a bottom-up implementation where we start
reading the code from the bottom, as it were. In those programs, main() appeared as the
last function defined in the source file. It does not matter if you take a top-down or bottom-
up approach.

In order for the compiler to be able to process functions in a top-down manner, function
prototypes are required. Note that while any function prototype must appear before the
function is called, the order they appear in is unimportant.

Before you add the function prototypes, you may want to copy hello6.c to hello7.c and
rearrange the functions instead of typing in the program again. However, either method is
fine. Try to compile the program. You may notice that you get the same kind of errors as
when we removed the #include <stdio.h> line.

Note that the order of execution has not changed. Even though the order of the functions in
hello7.c has changed in the source file, at execution time each function is called in the
same order as in hello6.c and the graph of the order of execution, given in the previous
section, is also the same.

Once the functions are in the preceding order and main() is the first function, add the
function prototypes, then compile, run, and verify that the output of hello7.c is identical
to that of hello6.c.

It is good practice to put all the function prototypes together at the beginning of the file.
This is not a requirement, however.

Understanding Program Structure Chapter 2

[62]

Function prototypes do not have to appear in the same order as the function definitions
themselves. However, to do so—while tedious—also makes it somewhat easier to find
function definitions (function_C() is defined after function_B() and before
function_D() and function_E(), for instance), especially when there are many function
definitions. We can then use the order of the function prototypes as a kind of index of
where to find the function definition in our source file.

You can now write programs consisting of the main() function and zero or more functions
you define. The function definitions can appear in any order and can be called from
anywhere within the program.

Summary
In this chapter, we began with a very simple C program and explored C statements. We
expanded and changed our program through the use of functions. We saw how to define
functions, call them, and declare function prototypes. Lastly, we saw how we can structure
our programs using a top-down or bottom-up approach when implementing our program.

Thinking about solving a problem in terms of breaking it down into smaller pieces and
solving each of them via functions is an essential skill to be able to solve complex problems
in any programming language.

As we explore the remainder of the C syntax, we will demonstrate each feature through
functions and further explore how we can change functions to make our programs either
more appropriate to our problem or to make it easier to understand how the problem is
being solved.

In the next chapter, we will begin to develop an understanding of data types. The data type
determines how to interpret a value and what kind of manipulation can be done to that
value.

3
Working with Basic Data Types

Everything in a computer is a sequence of binary digits. C's intrinsic data types enable the
compiler to tell the computer how to interpret binary sequences of data.

A binary sequence plus a data type results in a meaningful value. The data type not only
leads to a meaningful value but it also helps determine what kind of operations on that
value make sense. Operations involve manipulating values as well as converting or casting
a value from one data type to a related data type.

Once we have explored C's intrinsic data types in this chapter, we can then use them as
building blocks for more complex data representations. This chapter, then, is the basis for
the more complex data representations we will encounter in Chapter 8, Creating and Using
Enumerations, through Chapter 16, Creating and Using More Complex Structures.

The following topics will be covered in this chapter:

Understanding bytes and chunks of data
Working with whole numbers
Working with numbers with decimal places
Using single characters
Understanding false (or zero) versus true (or anything not exactly zero)
Understanding how types are implemented on your computer with sizeof()
Understanding casting
Discovering the minimum and maximum values for each type on your computer

Working with Basic Data Types Chapter 3

[64]

Technical requirements
For the rest of this book, unless otherwise noted, you will continue to use your computer
with the following:

The plain text editor of your choice
A console, Terminal, or command-line window (depending on your OS)
The compiler, either GCC or Clang, for your particular OS

For the sake of consistency, it is best if you use the same computer and programming tools.
By doing so, you can focus more closely on the details of C on your computer.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Understanding data types
Everything in a computer is a sequence of binary digits (or bits). A single bit is either off (0)
or on (1). Eight bits are strung together to form a byte. A byte is the basic data unit. Bytes are
treated singly, as pairs called 16-bit words, as quadruples to form 32-bit words, and as
octets to form 64-bit words. These combinations of sizes of bytes are used in the following
ways:

Instructions for the CPU
Addresses for the locations of all things in the computer
Data values

The compiler generates binary instructions from our C statements; hence, we don't need to
deal with the instructions since we are writing proper C syntax.

We also interact with various parts of the computer via the address of that part. Typically,
we don't do this directly. For instance, we've seen how printf() knows how to fetch the
data from a function call we make and then move it to the part of the computer that spills it
out to the console. We are not, nor should we be, concerned with these addresses since
from computer to computer and from version to version of our operating system, they may
change.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Working with Basic Data Types Chapter 3

[65]

We will deal with the addresses of some, but not all, things in the computer in Chapter
13, Using Pointers. For the most part, again, the compiler handles these issues for us.

Both instructions and addresses deal with data. Instructions manipulate data and move it
around. Addresses are required for the instructions to be able to fetch the data and also to
store the data. In between fetching and storing, instructions manipulate it.

Before we get to manipulating data, we need to understand how data is represented and
the various considerations for each type of data.

Here is the basic problem. We have a pattern of black and white bits; what does it mean?

To illustrate how a pattern alone may not provide enough information for proper
interpretation, let's consider the following sequence. What does 13 mean in this context?

OK, I know what you are thinking. But wait! Look again. Now, what does 13 mean in this
context?

Working with Basic Data Types Chapter 3

[66]

Combining both aspects, we can now see the full spectrum of the problem:

The central picture is just a two-dimensional pattern of black and white pixels. In one
context, the central picture makes sense seen as the number 13; in another context, the
central picture makes the most sense seen as the letter B. We can only resolve the ambiguity
of the pixel pattern from its context with other pixel patterns. How we interpret the
patterns of black and white pixels is entirely dependent upon the context in which we view
them.

This is very much like the byte sequences the compiler generates, which the CPU processes.
Internally, commands, addresses, and data in the computer are nothing more than
sequences of 1s and 0s of various sizes. How the computer interprets the patterns of 1s and
0s is entirely dependent upon the context given to them by the computer language and the
programmer.

We, as programmers, must provide the guidelines to the compiler, consequently to the
CPU, on how to interpret the sequence. We do this in C by explicitly assigning a data
type to the data we want to manipulate.

C is a strongly typed language. That is, every value must have a type associated with it. It
should be noted that some languages infer the type of a piece of data by how it is used.
They will also make assumptions about how to convert one data type into another. These
are called loosely typed languages. C also does conversions from one type to another, but
the rules are fairly specific compared to other programming languages.

Working with Basic Data Types Chapter 3

[67]

In C, as in most programming languages, there are five basic and intrinsic data types.
Intrinsic means these types and all operations on them are built into the language.

Five basic types are as follows:

Whole numbers: They can represent a positive-only range of values or a range
that includes both positive and negative values.
Numbers with fractions, or decimal numbers: These are all the numbers
between whole numbers, such as ½, ¾, 0.79, 1.125, and 3.14159 – an approximate
value for π, or even 3.1415926535897932384626433 – an even more precise but still
approximate value for π. Decimal numbers can always include negative values.
Characters: These are the basis of C strings. Some languages have a separate
string type. In C, strings are a special case of arrays of characters—not a data type
but a special arrangement of contiguous character values.
Boolean values: These can be of any size depending on the preference of the
compiler and the machine's preferred whole number size.
Addresses: These are the location of bytes in a computer's memory. C provides
for direct addresses of values in memory. Many languages do not allow direct
addressing.

Within each of these five types, there are different sizes of types to represent different
ranges of values. C has very specific rules about how to convert a given data type into
another. Some are valid, others make no sense. We will explore these in Chapter 4, Using
Variables and Assignment.

For now, we need to understand the basic types and the different sizes of values they might
represent.

Bytes and chunks of data
The smallest data value in C is a bit. However, bit operations tend to be very expensive and
not all that common for most computer problems. We will not go into bit operations in this
book. If you find you need to delve deeper into bit operations in C, please check out the
annotated bibliography in the appendix for texts that treat this subject more fully.

The basic data value in C is a byte or a sequence of 8 bits. The set of values a byte can
represent is 256, or 28 values. These values have a range of 0 to 255, or 28-1. 0 is a value that
must be represented in the set of 256 values; we can't leave that value out. A byte can either
represent a positive integer in the range of 0-255, or 28-1, or a negative integer in the range
of -128-127. In either case, there are only 256 unique combinations of 1s and 0s.

Working with Basic Data Types Chapter 3

[68]

While most humans don't ordinarily count this high, for a computer, this is a very narrow
range of values. A byte is the smallest of the chunks of data since each byte in memory can
be addressed directly. A byte is also commonly used for alphanumeric characters (like you
are now reading) but is not large enough for Unicode characters. ASCII characters and
Unicode characters will be explained in great detail in Chapter 15, Working with Strings.

Chunks, or bytes, increase in multiples of 2 from 1 byte, 2 bytes, 4 bytes, 8 bytes, and 16
bytes. The following table shows how these may be used:

of
bytes

of
bits

Highest
integer value

Binary
form

Typical
uses

1 8 255 (28)-1 ASCII character

2 16 65,535 (216)-1

Integer,
small real number,
Unicode character,
small address space

4 32 4,294,967,295
or over 4.2 x 109 (232)-1 Integer, real number, Unicode character, medium address

space

8 64 18,446,744,073,709,551,615
or over 1.8 x 1019 (264)-1

Very large integer,
large real number,
large address space

16 128 over 3.40 × 1038 (2128)-1 Very large real number,
very large address space

In the history of computing, there have been various byte ranges for basic computation. The
very earliest and simplest CPUs used 1-byte integers. These very rapidly developed into 16-
bit computers whose address space and largest integer value could be expressed in 2
bytes. As the range of integers increased from 2 to 4 to 8, so too did the range of possible
memory addresses and the ranges of floating-point numbers.

As the problems that were addressed by computers further expanded, computers
themselves expanded. This resulted in more powerful computers with a 4-byte address
range and 4-byte integer values. These machines were prevalent from the 1990s through to
the early part of the 21st century.

Today, most desktop computers are 64-bit computing devices that can address incredibly
large amounts of memory and model problems that can account for all the atoms in the
universe! For problems that require the processing of values that are 128 bytes and higher,
very specialized computers have been developed.

Working with Basic Data Types Chapter 3

[69]

You will seldom, if ever, need to consider those astronomically large numbers but they are
necessary to solve mind-bendingly large and complex problems. Nonetheless, what you
can do with very small chunks and relatively small ranges of values, you can also do with
large ones. It is more important for us to learn how different types are represented and
used, regardless of their size.

Notice in the preceding table the correlation between the number of bits in a chunk and the
exponent in the binary form. Also notice that the number of bytes is a power of 2: 2

0
, 21, 22,

23, 24. There are no 3-byte, 5-byte, or 7-byte chunks. They are just not needed.

You can also see from the table that the typical use of a chunk is directly related to its
size. In C, the machine's preferred whole number size is typically the same size as an
address. That is, the machine's natural integer size is the count of the largest number of
bytes that the machine can address. This is not a hard rule, but it is a common guideline.

Byte allocations and ranges may vary from machine to machine. Embedded computers,
tablets, and phones will likely have different sizes for each type than desktop computers or
even supercomputers. We'll create the sizes_ranges.c program later in this chapter to
confirm and verify the sizes and ranges of integers on your machine. This program will be
handy to run whenever you are presented with a new system on which to develop C
programs.

Representing whole numbers
The basic whole number type is an integer or just int. Integers can either be positive only,
called unsigned, or they can be negative and positive, called signed. As you might expect,
the natural use for integers is to count things. You must specify unsigned if you know you
will not need negative values.

To be explicit, the default type is unsigned int, where the keyword unsigned is optional.

An unsigned integer has its lowest value of 0 and its highest value when all bits are set to 1.
For instance, a single byte value has a possible 256 values but their range is 0 to 255. This is
sometimes called the one-off problem where the starting value for counting is 0 and not 1,
as we were taught when we first learned to count. It is a problem because it takes some
time for new programmers to adjust their thinking. Until you are comfortable thinking in
this way, the one-off problem will be a common source of confusion and possibly the cause
of bugs in your code. We will revisit the need for this kind of thinking when we explore
loops (Chapter 7, Exploring Loops and Iteration) and when we work with arrays (Chapter
11, Working with Arrays, and Chapter 12, Working with Multi-Dimensional Arrays) and
strings (Chapter 15, Working with Strings).

Working with Basic Data Types Chapter 3

[70]

Representing positive and negative whole
numbers
When negative numbers are needed, that is, whole numbers smaller than 0, we specify
them with the signed keyword. So, a signed integer would be specified as signed int.
The natural use for signed integers is when we want to express a direction relative to zero,
either larger or smaller. By default, and without any extra specifiers, integers are signed.

A signed integer uses one of the bits to indicate whether the remaining bits represent a
positive or negative number. Typically, this is the most significant bit; the least significant
bit is that which represents the value 1. As with positive whole numbers, a signed integer
has the same number of values, but the range is shifted so that half of the values are below
0, or, algebraically speaking, to the left of 0. For instance, a single signed byte has 256
possible values but their range is -128 to 127. Remember to count 0 as one of the possible
values. Hence the apparent asymmetric range of values (there's that pesky one-off problem,
again).

Specifying different sizes of integers
Integers can be specified to have various sizes for their data chunk. The smallest chunk is a
single byte. This is called a char. It is so named for historical reasons. Before Unicode came
along, the full set of English characters, uppercase, lowercase, numbers, punctuation, and
certain special characters, could be represented with 256 values. In some languages, a byte
is actually called a byte; unfortunately, not in C.

C99 added more integer types that specify the minimum width of integer values. The basic
set of these are of the int<n>_t or uint<n>_t forms, where <n> is either 8, 16, 32, or 64.
The values of these types are exactly that number of bits. Such type specifications allow
much greater predictability when porting a program from one computer system to a
different one with possibly a different CPU and operating system. There are additional
integer types to aid portability not listed here:

Type # of Bytes Equivalent Types
char 1 signed char

int8_t 1
unsigned char 1
uint8_t 1

short 2
signed short, short int,
signed short int

Working with Basic Data Types Chapter 3

[71]

int16_t 2
uint16_t 2
int 4 (?) signed, signed int
unsigned 4 (?) unsigned int

long 4 (?)
signed long, long int,
signed long int

unsigned long 4 (?) unsigned long int

int32_t 4
uint32_t 4

long long 8 (?)
signed long long,
signed long long int

int64_t 8
unsigned long long 8 (?) unsigned long long int

uint64_t 8

Notes:

When signed or unsigned is specified, the type is guaranteed to be of the
specified positive/negative or positive only ranges. When not specified, the
default may be signed.
short is guaranteed to be at least 2 bytes but may be longer depending upon the
machine.
int, unsigned, long, and unsigned long are guaranteed to be at least 4 bytes
but may be longer depending on the machine.
long long and unsigned long long are guaranteed to be at least 8 bytes but
may be longer depending on the machine.

Do not be too concerned with all of these variations at first. For the most part, you can
safely use int until you begin developing programs on a wider variety of hardware where
portability is a bigger concern.

While int types represent whole numbers, this is a relatively small set of numbers unless
we can also represent the numbers between whole numbers—numbers with fractions or
decimal numbers.

Working with Basic Data Types Chapter 3

[72]

Representing numbers with decimals
Not everything in the world is a whole number. For that, we have numbers with fractions
or decimal numbers. Decimal numbers are used most naturally for measuring things.

A real number is of the following form:

significand x 10exponent

Here, both the significand and the exponent are signed integers. The size of each depends
upon the number of bytes for a given real number type. There are no unsigned
components. This provides a very large range of numbers, from positive to negative as well
as very small fractional values:

Type # of Bytes
float 4
double 8
long double 16

Typically, when real numbers are used, either very precise values are desired or the
calculations tend to have incredibly large ranges.

For completeness, decimal numbers are just one part of the set of real numbers. Real
numbers include all rational numbers, irrational numbers, transcendental numbers, such as
π, and integers. Real numbers exist on a number line. These are contrasted with imaginary
numbers, sometimes called complex numbers. These have an imaginary component, which
is -11/2, the square root of -1.

Another use for values is to represent alphabetical characters.

Representing single characters
To specify a single character, use either char or unsigned char. C was developed in the
time before Unicode. The character set they decided upon using was ASCII (short for
American Standard Code for Information Interchange). All the necessary characters for
printing control, device control, and printable characters and punctuation could be
represented in 7 bits.

Working with Basic Data Types Chapter 3

[73]

One reason ASCII was chosen was because of its somewhat logical ordering of uppercase
and lowercase letters. An uppercase A and lowercase a are different by only 1 bit. This
makes it relatively easy to convert from uppercase to lowercase and vice versa. There is an
ASCII table provided for your reference in the Appendix; we also develop a program to
print a complete ASCII table in Chapter 15, Working with Strings.

To summarize ASCII's organization, refer to the following table:

Range Usage
0..31 Control characters for printing and device communication
32..63 Punctuation and numbers
64..95 Uppercase alphabet plus miscellaneous punctuation
96..127 Lowercase alphabet plus miscellaneous punctuation
128..255 Not used

As Unicode was developed and has become standardized, it used 2-byte or 4-byte
encodings for the many character sets of the world's languages. 7-bit ASCII codes were
incorporated into the lowest 7 bits for backward compatibility with original ASCII.
However, Unicode is not implemented uniformly across all operating systems.

Representing Boolean true/false
A Boolean value is one that evaluates to true or false. On some systems, YES and yes are
equivalent to true while NO and no are equivalent to false. For, instance, Is today
Wednesday? evaluates to true only 1 out of 7 days. The other 6 days, it evaluates to false.

Before C99, there was no explicit type for Boolean. A value of any type that is 0 (exactly
zero) is considered as also evaluating to a Boolean false. Any other value than exactly 0 (a
bit pattern of only zeros) will evaluate to a Boolean value of true. Real numbers rarely, if
ever, evaluate exactly to 0, especially after any kind of operation on them. These data types
would therefore almost always evaluate to true and so would be poor choices as a Boolean
substitute.

Since C99, a _Bool type has been available, which, when evaluated, will always evaluate to
only 0 or 1. When we include the stdbool.h file, we are able to use the bool type as well;
this is a bit cleaner than using the cumbersome _Bool type.

As a general rule, it is always more reliable to test for zero-ness, or false, than to rely on
the compiler's implementation for interpreting Boolean true values from other types.

Working with Basic Data Types Chapter 3

[74]

Understanding the sizes of data types
As we discussed earlier, the number of bytes that a type uses is directly related to the range
of values it can hold. Up to this point, this has all been necessarily theoretical. Let's now
write a program to demonstrate what we've been exploring.

The sizeof() operator
The sizeof() operation is a built-in function that takes as its parameter a C data type and
returns the number of bytes for that data type. Let's write a program to see how this works.

In the first part, we'll set up the necessary include files, declare function prototypes, and
create our main() function. Even though we show this program in two parts, it is really
just a single file. The following program, sizes_ranges1.c, shows the first part of our
program:

#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>

 // function prototypes
void printSizes(void);

int main(void)
{
 printSizes();
}

The header file, stdio.h, is included, as are two new header files—stdint.h and
stdbool.h. Recall that stdio.h declares, amongst other things, the function prototype for
printf(). stdint.h declares the sizes in bytes of each of the intrinsic data types.
stdbool.h defines the bool data type and the values true and false. These are part of
the C Standard Library. We will encounter several other C Standard Library files but not all
of them. All of them are listed with a brief description of their purpose in the Appendix. We
will learn a great deal more about header files in Chapter 24, Working with Multi-File
Programs.

Working with Basic Data Types Chapter 3

[75]

As you can see, we call a function that has been declared, or prototyped, but has not yet
been defined. Let's define it in the next section of the program:

 // function to print the # of bytes for each of C11's data types
 //
void printSizes(void)
{
 printf("Size of C data types\n\n");
 printf("Type Bytes\n\n");
 printf("char %lu\n" , sizeof(char));
 printf("int8_t %lu\n" , sizeof(int8_t));
 printf("unsigned char %lu\n" , sizeof(unsigned char));
 printf("uint8_t %lu\n" , sizeof(uint8_t));
 printf("short %lu\n" , sizeof(short));
 printf("int16_t %lu\n" , sizeof(int16_t));
 printf("uint16t %lu\n" , sizeof(uint16_t));
 printf("int %lu\n" , sizeof(int));
 printf("unsigned %lu\n" , sizeof(unsigned));
 printf("long %lu\n" , sizeof(long));
 printf("unsigned long %lu\n" , sizeof(unsigned long));
 printf("int32_t %lu\n" , sizeof(int32_t));
 printf("uint32_t %lu\n" , sizeof(uint32_t));
 printf("long long %lu\n" , sizeof(long long));
 printf("int64_t %lu\n" , sizeof(int64_t));
 printf("unsigned long long %lu\n" , sizeof(unsigned long long));
 printf("uint64_t %lu\n" , sizeof(uint64_t));
 printf("\n");
 printf("float %lu\n" , sizeof(float));
 printf("double %lu\n" , sizeof(double));
 printf("long double %lu\n" , sizeof(long double));
 printf("\n");
 printf("bool %lu\n" , sizeof(bool));
 printf("\n");
}

In this program, we need to include the header file, <stdint.h>, which defines the fixed-
width integer types. If you omit this include, you'll get a few errors. Try that—comment
out that include line and see what happens.

To get the new bool definition, we also have to include <stdbool.h>. What happens if
you omit that file?

The return type of sizeof() on my system is unsigned long. Therefore, we use the
format specifier %lu to properly print out a value of that type.

Working with Basic Data Types Chapter 3

[76]

On my system, I get the following output:

On my 64-bit operating system, a pointer is 8 bytes (64 bits). So too, then, are long and
unsigned long.

How do the values reported by your system differ from these?

Ranges of values
Let's extend this program to provide the ranges for each data type. While we could
compute these values ourselves, they are defined in two header files—limits.h for integer
limits and float.h for real number limits. To implement this, we add another function
prototype, add a call to that function from within main(), and then define the function to
print out the ranges. In the printRanges() function, we use the fixed-width types to avoid
variations from system to system.

Working with Basic Data Types Chapter 3

[77]

Let's add another function. In the following code, the additional include directives and
function prototype are highlighted:

#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <limits.h>
#include <float.h>

 // function prototypes
void printSizes(void);
void printRanges(void);

int main(void) {
 printSizes();
 printRanges();
}

Now, having printRanges() prototypes, let's add its definition. The printSizes() function is
unchanged:

void printRanges(void) {
 printf("Ranges for integer data types in C\n\n");
 printf("int8_t %20d %20d\n" , SCHAR_MIN , SCHAR_MAX);
 printf("int16_t %20d %20d\n" , SHRT_MIN , SHRT_MAX);
 printf("int32_t %20d %20d\n" , INT_MIN , INT_MAX);
 printf("int64_t %20lld %20lld\n" , LLONG_MIN , LLONG_MAX);
 printf("uint8_t %20d %20d\n" , 0 , UCHAR_MAX);
 printf("uint16_t %20d %20d\n" , 0 , USHRT_MAX);
 printf("uint32_t %20d %20u\n" , 0 , UINT_MAX);
 printf("uint64_t %20d %20llu\n" , 0 , ULLONG_MAX);
 printf("\n");
 printf("Ranges for real number data types in C\n\n");
 printf("float %14.7g %14.7g\n" , FLT_MIN , FLT_MAX);
 printf("double %14.7g %14.7g\n" , DBL_MIN , DBL_MAX);
 printf("long double %14.7Lg %14.7Lg\n" , LDBL_MIN , LDBL_MAX);
 printf("\n");
}

Working with Basic Data Types Chapter 3

[78]

Some of the numbers that appear after % in the format specifier string may appear
mysterious. These will be explained in exhaustive detail in Chapter 19, Exploring Formatted
Output. The result of the added function should look like this, in addition to what we had
before:

How do the values from your system compare?

Summary
Again, whew!

There were a lot of details about data types, chunk sizes, and value ranges. The key idea
from this chapter is to remember that there are only really four data types—integer, real
number, character, and boolean. The fifth type, pointers, is really just a special case of
integers.

In the next chapter, we will explore how to use the different types of values when we create
and assign values.

4
Using Variables and

Assignment
Programs manipulate data values. Whether a program performs a single calculation—such
as, say, converting a temperature value from Fahrenheit to Celsius—reads data only to
display it, or performs much more complex calculations and interactions, the values a
program manipulates must be both accessible and assignable. Accessible means that a
value must reside somewhere in computer memory and should be retrievable. Assignable
means a value or the result of a calculation must be stored somewhere in computer
memory to be later retrieved. Each value has a data type and a named location where it is
stored. These can either be variables or constants.

Variables, or non-constant variables, hold values that are the result of calculations or data
that will change as the program executes. Constant variables are variables that don't
change their value once they are given a value. Variables, whether constant or variable,
receive their values via assignment. Assignment is a simple expression. Literal values, or
literals, are values encoded in the program and can never change.

Using Variables and Assignment Chapter 4

[80]

The following topics will be covered in this chapter:

Using types to determine the interpretation of values
Learning some of the pitfalls of the #define directive and why constants are
preferred
Writing a program to set various constants in different ways
Writing a program to use variables and constants (not just set them)
Understanding four types of assignment

Technical requirements
Continue to use your computer with the following:

A plaintext editor of your choice
A console, terminal, or command-line window (depending on your OS)
A compiler—either GCC or clang—for your particular OS

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Understanding types and values
Every value in a computer program has an associated type. The type of a value can be
inferred by how it is expressed in the program code and how it is coded. Alternatively, the
type of a value can be explicitly determined by you, the programmer. A value in C always
has a type. So, a value can have either an inferred or implicit type or it can have an explicit
type.

There are also inferred types from literal values. A literal value is a sequence of digits in the
program code whose value is implicitly determined by the compiler at compile time, which
is when the program is compiled. The value of a literal can never change; it is baked into
the program code.

When a value is given an explicit type, the compiler assigns a type to that value. A value of
one type can also be converted into another type, either implicitly by how it is used or
explicitly with typecasting.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Using Variables and Assignment Chapter 4

[81]

So, we should always think of the value/type pair. The type determines not only how the
value is interpreted but also what possible valid ranges of values it can have.

If we have a value, then we should always ask what is its type? If we have a type, then we
should always ask what values can it have? and what value is it now? This kind of thinking
will be critical when we look at looping and arrays.

Introducing variables
A variable is a location in memory that holds a value of a specified type that can vary over
the life of the variable, identified by its name. When the variable is defined with both a type
and an identifier, its life begins. It can hold the same value throughout its life or it can be
modified or overwritten with a new value of that type. The variable's life ends—that is, the
memory it identifies is deallocated—when the block in which it was declared ends. We'll
talk more about variable lifetimes in Chapter 25, Understanding Scope.

So, a variable is a memory location with an identifier (name) associated with a type that
contains a value. The following three components are essential:

A unique identifier or name
A type
A value

The variable should always have some known starting value, even if it is 0; this is called
initialization. If we don't give the variable an initial value, we can never be sure what value
it might have from one run to the next. When function blocks and programs are
deallocated, the values occupied by their memory are left behind. It is, therefore, up to us to
ensure that we initialize the memory we use for known good values.

A variable is initialized and overwritten by means of an assignment operation, where a
value is assigned to the memory location identified by the variable. Once a constant
variable is given a value, that value can never change.

Before we explore values and assignment, we need to understand explicit typing when we
create and declare variables.

Using Variables and Assignment Chapter 4

[82]

Naming variables
Every variable has an identifier or a name. A variable name is an identifier; function names
are identifiers. We will encounter other kinds of identifiers that are used in many different
contexts.

An identifier, or name, in C is a sequence of capital letters (A..Z) and small letters (a..z),
digits (0..9), and the underscore (_) character. An identifier may not begin with a
digit. Upper and lowercase letters are different from each other, so achar, aChar, AChar,
and ACHAR would identify different variables. An identifier may not have the same spelling
as a C keyword. A list of C keywords can be found in the Appendix section of this book.

As with function identifiers, relying on the casing of letters to differentiate variables is not
good programming practice. The most essential guideline is that variable names should
closely match the kinds of values they hold. Name variables so that their names clearly
reflect their purpose—for example, inch, foot, yard, and mile.

There are many conventions for naming variables. Two common methods to make variable
names descriptive yet easy to read are camel-case and underscore-separated, also known
as snake-case. Camel-case names have the beginning characters of words within the name
capitalized. In underscore-separated names, _ is used between words:

All-lowercase: inchesperminute, feetpersecond, and milesperhour
Camel-case: inchesPerMinute, feetPerSecond, and milesPerHour
Snake-case (or underscore-separated): inches_per_minute,
feet_per_second, and miles_per_hour

As you can see, all-lowercase names are somewhat difficult to read. However, these are not
nearly as difficult to read as all-uppercase names. The other two ways are quite a bit easier
to read. Therefore, we prefer to use either of the last two. We will use camel-case identifiers
throughout this book.

If you choose one identifier naming convention, stick to it throughout your program. Do
not mix different identifier naming schemes as this makes remembering the exact name of a
thing, function identifiers, and other identifiers much more difficult and error-prone.

We can now explore explicit types of variables.

Using Variables and Assignment Chapter 4

[83]

Introducing explicit types of variables
The format of a variable declaration is type identifier; or type identifier1,
identifiers, ... ;.

Here, type is one of the data types that we encountered earlier and identifier is the
name of the variable we are declaring. In the first example, a single variable is declared. In
the second form, multiple variables are declared, each having the same type, separated by
commas. Note that each one is a C statement because it concludes with ;. Consider the
following variable declarations:

#include <stdbool.h> /* So we can use: bool, true, false */

int aNumber;
long aBigNumber;
long long aReallyBigNumber;
float inches;
float feed;
float yards;
double length, width, height;
bool isItRaining;

In each of these declarations, we use spacing to make the type and name of each variable
easier to read. Unfortunately, these declarations are not necessarily the best we could use.
The values of the variables do not have any value yet. However, they are not yet initialized.

Using explicit typing with initialization
A better format for a variable declaration is one where the variable is initialized or given a
starting value when it is declared, such as type identifier1 = value1; , type
identifier2 = value2;, or

type identifier1 = value1 , identifier2 = value2 , ... ;.

Here, value is a literal constant or an already-declared variable. Note that in the second
form of variable declaration, each variable must have its own initializing value. These are
often accidentally omitted. Therefore, the first form is preferred. Consider the following
declarations with initialization:

#include <stdbool.h> /* So we can use: bool, true, false */

int aNumber = 10;
long aBigNumber = 3211145;
long long aReallyBigNumber = 425632238789;

Using Variables and Assignment Chapter 4

[84]

float inches = 33.0;
float feet = 2.5;
float yards = 1780;
double length = 1 , width = 2 , height = 10;
bool isItRaining = false;

int myCounter = 0;
int aDifferentCounter = myCounter;

As before, arbitrary spacing is used to vertically align variable names as well as to align
their initial values. This is only done for readability. This sort of practice is not required but
is generally considered good practice.

Initialization is a form of assignment; we are assigning a starting value to each variable.
This is indicated by the = sign.

Note that because the type of the variable is explicit in its declaration, the assigned
values—in this case, literal constants—are converted values of that type. So, while the
following is correct, it may mislead an already-tired or overworked programmer reading it:

double length = 1 , width = 2 , height = 10;

Make note here of how a comma (,) is used to separate variable identifiers and the
initialization. This declaration is still a single statement since it ends with a semi-colon (;).
We will explore this further in Chapter 5, Exploring Operators and Expressions.

It is almost always better, although not required, to be explicit. A slightly better version of
the preceding would be as follows:

double length = 1.0;
double width = 2.0;
double height = 10.0;

Each type, identifier, and initial value is on a single line.

Having examined variables whose values can change, we can now turn our attention to
constant variables (yes, that sounds odd to me, as well) and literal constants.

Exploring constants
We use variables to hold values that are computed or can change over their lifetime, such as
counters. However, we often have values that we don't ever want to change during their
lifetime. These are constants and can be defined in a number of ways for different uses.

Using Variables and Assignment Chapter 4

[85]

Literal constants
Consider the following literal character sequences:

 65
 'A'
 8.0
131072.0

Each of these has an internal byte stream of 0000 0000 0100 0001. However, because of
the punctuation surrounding these values, the compiler can infer what types they
have from their context:

 65 --> int
 'A' --> unsigned char
 8.0 --> float
 131072.0 --> double

These values are literally typed into our source code and their types are determined by the
way in which they are written, or precisely by how punctuation around them specifies the
context for their data type.

The internal value for each is constant; it is that same bit pattern. The literal 65 value will
always be interpreted as an integer with that value. The literal 'A' value will always be
interpreted as a single character. The literal 8.0 value may be interpreted as a float; if it is
interpreted as a double, it will have a slightly different internal bit pattern. The literal
131072.0 value also may be interpreted as a float or a double. When it is interpreted as a
double, it will also have the same bit pattern as the others.

Here are some examples to expand on each of these explanations:

Integer constants: 65, 1024, -17 , 163758 , 0 , and -1
Double constants: 3.5, -0.7 , 1748.3753, 0.0, -0.0000007, 15e4,
and -58.1e-4
Character constants: 'A', 'a', '6', '0', '>', '.', and '\n'

Notice that while the 0 value is present in each case, because they are all typed differently,
they will have different internal bitstreams. Integer 0 and double 0.0 are patterns of all
zeros. However, the '0' character will have a different value, which we will see in Chapter
15, Working with Strings.

Using Variables and Assignment Chapter 4

[86]

You might also have noticed the strange notation for the 15e4 and -58.1e-4 doubles.
These values are expressed in scientific notation, where the first value evaluates to 15 x
104, or 150,000, and the second evaluates to -58.1 x 10-4, or -0.000581. This is a
shorthand notation for values that are either too large or too small to easily express with
common decimal notation.

When a constant integer value is too large to fit into the valid ranges of the default type, the
type is altered to hold the larger value. Therefore, an int value may become long int or
long long int, depending on the value given and the machine architecture. This is
implicit typecasting. The compiler does not want to lose any part of a value by stuffing it
into a type with a smaller range, so it picks a type that will fit the value.

There is the same issue regarding implicit conversion of floats and doubles—when a literal
value is interpreted, the compiler will pick the most appropriate data type depending
on both the value and how that literal value is used.

The preceding literal constants are most common and are evaluated using the base-10 or
decimal numbering system. In base-10, there are 10 symbols, 0 through 9, to represent 10
values. Every value in a base-10 number system can be represented as a power of 10.
The value 2,573 is really 2,000 + 500 + 70 + 3, or, using exponents of base-10, it is
2*103 + 5*102 + 7*101 + 3*10

0.

Sometimes, we may want to express a constant value in base-8, or octal, or base-16, or
hexadecimal. In C, octal constants begin with the digit 0 and subsequent digits must be in the
range of valid octal digits, 0 through 7. Hexadecimal constants begin with ox or 0X (0
followed by the letter x) and the following characters may be the valid hexadecimal digits,
0 through 9 and a through f or A through F.

Without going into greater detail about octal and hexadecimal, here are some examples:

Octal integers: 07, 011, and 036104
Unsigned octal: 07u, 011u, and 036104u
Long octal: 07L, 011L, and 036104L
Hexadecimal integers: 0x4, 0Xaf, 0x106a2, and ox7Ca6d
Unsigned hexadecimal: 0x4u, 0Xafu, 0x106a2u, and ox7Ca6du
Long hexadecimal: 0x4L, 0XafL, 0x106a2L, and ox7Ca6dL

Just remember that base-10, base-8, and base-16 are just different ways to represent values.

Using Variables and Assignment Chapter 4

[87]

Additionally, if you want to guarantee that a decimal number will be a smaller float type
than a double, you can follow it with f or F. If you want it to be a much larger long-double,
you can follow it with l or L. L is preferred over using l so as not to confuse the number 1
with the letter l. Here are some examples:

Float literals: 0.5f, -12E5f, and 3.45e-5F
Double literals: 0.5, -12E5, and 3.45e-5
Long-double literals: 0.5L, -12E5fL, and 3.45e-5FL

Literal constants are interpreted by the compiler and embedded into our program.

We use these kinds of constants typically when we initialize our variables, as we saw in the
previous section, or when we want to perform some known calculation on a variable, such
as the following:

feet = inches / 12.0;
yards = feet / 3.0;

In these calculations, both denominators are decimal numbers. Therefore, they determine
the contexts of the resultant calculation. Regardless of what type inches is, the result will
be a decimal number. Then, that result will be implicitly converted into whatever type feet
is upon assignment. Likewise, the result of feet / 3.0 will be a decimal number (float or
double); upon assignment, that result will be converted into the type of yards.

Defined values
Another way to define constants is to use the #define preprocessor directive. This takes
the form of #define symbol text, where symbol is an identifier and text is a literal
constant or a previously defined symbol. Symbol names are typically all in uppercase and
underscores are used to distinguish them from variable names.

An example would be to define the number of inches in feet or the number of feet in a yard:

#define INCHES_PER_FOOT 12
#define FEET_PER_YARD 3

feet = inches / INCHES_PER_FOOT;
yards = feet / FEET_PER_YARD;

Using Variables and Assignment Chapter 4

[88]

When the preprocessing phase of compilation encounters a definition such as this, it carries
out a textural substitution. There is no type associated with the symbol and there is no way
to verify that the actual use of a symbol matches its intended use. For this reason, the use of
these kinds of constants is discouraged. We only included them here for completeness since
many older C programs may make extensive use of this mechanism.

Because #define enables textural substitution, there are many other ways it can be and is
used. This feature is so powerful that it must be used with extreme caution, if it is used at
all. Many of the original reasons for relying on the preprocessor are no longer valid. The
proper place for exploration of the preprocessor would be in a much more advanced
programming course.

Explicitly typed constants
C provides a safer means of declaring named constants, other than by using the
preprocessor. This is done by adding the const keyword to a variable declaration. This sort
of declaration must be of the const type identifier = value; form, where type,
identifier, and value are the same as in our preceding variable declaration
form—except here, the initializing value is not optional. The constant variable loses its
ability to change after the statement is evaluated. If we don't give it a value when we
declare it, we cannot do so later. Such a declaration without an initializing value is,
therefore, useless.

When we declare a constant in this manner, it is named; it has a type and it has a value that
does not change. So, our previous example becomes as follows:

const float kInchesPerFoot = 12.0;
const float kFeetPerYard = 3.0;

feet = inches / kInchesPerFoot;
yards = feet / kFeetPerYard;

This is considered safer because the constant's type is known and any incorrect use of this
type or invalid conversion from this type to some other type will be flagged by the
compiler.

It is an arbitrary convention to begin constant names with the letter k; it is not mandatory to
do so. We could also have named these constants inchesPerFootConst and
feetPerYardConst, or, simply, inchesPerFoot and feetPerYard. Any attempt to
change their values would result in a compiler error.

Using Variables and Assignment Chapter 4

[89]

Naming constant variables
C makes no distinction between a variable identifier and a constant identifier. However, it
is often useful to know whether the identifier you are using is a constant.

As with functions and variables, there are several conventions commonly used for naming
constants. The following conventions are relatively common to arbitrarily differentiate
constants from variables:

Prefix a constant name with k or k_—for example, kInchesPerFoot or
k_inches_per_foot.
Suffix a name with const or _const—for example, inchesPerFootConst or
inches_per_foot_const.
Use snake-case with all the capitals—for example, THIS_IS_A_CONSTANT. All-
uppercase is quite unreadable. This is typically used for the #define symbols to
show that they are not just a constant—for example, INCHES_PER_FOOT.
None. C does not distinguish between constants—for example, int
inchesPerFoot versus const int inchesPerFoot. It should be obvious that
the number of inches per foot does not ever change. Therefore, there is no real
need to distinguish its name as a constant.

As with other naming conventions, any convention for constants, if one exists, should be
clearly defined and consistently used throughout a program or set of program files. I tend
to use either the first or the last conventions in my programs.

Using types and assignment
So, we have variables to hold values of a specified type that we can retrieve and manipulate
by their identifiers. What can we do with them? Essentially, believe it or not, we can just
copy them from one place to another. Values in variables or constants can only be changed
through assignment. When we use them, their value is copied as a part of the evaluation
but the value remains unchanged. A variable's value can be used in many ways over its
lifetime, but that value will not change except when a new value is copied over it. We will
now explore the various ways that variables are copied:

Explicit assignment using the = operator
Function parameter assignment

Using Variables and Assignment Chapter 4

[90]

Function return assignment
Implicit assignment (this will be covered when we look at expressions in the next
chapter)

Let's look at the first three ways of copying the variables in the subsequent sections.

Using explicit assignment, the simplest
statement
We have already seen explicit assignment used when we initialized variables and
constants. After we have declared a variable, we can change it by using the = assignment
operator. An assignment statement is of the form identifier = value;, where
identifier is our already-declared variable and the value can be a constant, another
variable, the result of a calculation, or the returned value from a function. We will later see
how all of these are expressions are evaluated and provide a result.

Here is an example of assignment statements:

feet = 24.75;

The 24.75 literal constant is evaluated as a value of float or double type and is assigned to
the feet variable:

feet = yards/3.0 ;

The value of yards is obtained and then divided by the 3.0 literal constant. The result of
the evaluation is assigned to the feet variable. The value of yards is unchanged:

feet = inchesToFeet(inches);

The inchesToFeet() function is called with the value obtained from
the inches variable and is executed. Its result (its return value) is assigned to
the feet variable. The value of inches is unchanged.

Assigning values by passing function parameters
When we declare a function prototype that takes parameters, we also declare those
parameters as formal parameters. Formal parameters have no value, only a type and,
optionally, a name. However, when we call the function, we supply the actual parameters,
which are the values that are copied into those placeholder parameters.

Using Variables and Assignment Chapter 4

[91]

Consider the printDistance() function declaration and definition in the following
program:

#include <stdio.h>

void printDistance(double);

int main(void)
{
 double feet = 5280.0;
 printDistance(feet);
 printf("feet = %12.3g\n" , feet);
 return 0;
}

 // Given feet, print the distance in feet and yards.
 //
void printDistance(double f)
{
 printf("The distance in feet is %12.3g\n" , f);
 f = f / 3.0 ;
 printf("The distance in yards is %12.3g\n" , f);
}

In this function, we focus on the assignment that occurs between the function call and the
execution of the function (at its definition).

The function prototype says that the function takes a single parameter of the double type.
The name is not given since it is optional. Even if we did give a name, it is not required to
match the parameter name given in the function definition. In the function definition, the
parameter is named f. For the function, the f variable is created as a double with the value
given in the function call. It is as if we had assigned the value of the feet variable to
the f function variable. In fact, this is exactly how we do that. We can manipulate f because
it is assigned a copy of the value of feet at the time the function is called. What this
example shows is that value of the f variable is divided by 3.0 and assigned back to
the f variable, and then printed to the console. The f variable has a lifetime of the block of
the function and the changed value in f does not change the value in the feet variable.

Because we want to use good coding practices that make our intentions clear, rather than
obtuse, a better version of this function would be as follows:

 // Given feet, print the distance in feet and yards.
 //
void printDistance(double feet)
{
 double yards = feet / 3.0 ;

Using Variables and Assignment Chapter 4

[92]

 printf("The distance in feet is %12.3g\n" , feet);
 printf("The distance in yards is %12.3g\n" , yards);
}

This is clearer because of the following:

We declare the actual parameter, feet, which tells the reader what exactly is
being passed into the function.
We are explicitly declaring the yards variable and assigning it a value that is the
number of feet, or feet, divided by 3.0.

The lifetime of the feet actual parameter and the yards declared variable begins with
the start of the function block and ends with the end of the function block.

Assignment by the function return value
A function is a statement that can return the result of its execution to its caller. When the
function has a data type that is not void, the function is replaced by its returned value,
which can then be assigned to a variable of a compatible type.

The returned value may be explicitly assigned to a variable or it may be implicitly used
within a statement and discarded at the completion of the statement.

Consider the inchesToFeet() function declaration and definition:

#include <stdio.h>

double inchesToFeet(double);

int main(void)
{
 double inches = 1024.0;
 double feet = 0.0;
 feet = inchesToFeet(inches);
 printf("%12.3g inches is equal to %12.3g feet\n" , inches , feet);
 return 0;
}

 // Given inches, convert this to feet
 //
double inchesToFeet(double someInches)
{
 double someFeet = someInches / 12.0;
 return someFeet;
}

Using Variables and Assignment Chapter 4

[93]

In this function, we focus on the assignment that occurs at the return statement in the
function block and the caller.

In this function, inches—known to the function as the i variable—is converted via a
simple calculation to feet and that value is assigned to the f variable in the function. The
function returns the value of f to the caller. Essentially, the function call is replaced by the
value that it returns. That value is then assigned (copied) to the feet variable in the
main() function.

First, we have the following two lines:

 double feet = 0.0;
 feet = inchesToFeet(inches);

Those two lines could be replaced with the following single line:

 double feet = inchesToFeet(inches);

This statement both declares feet as a double and initializes it via the return value from
the function call.

Summary
Variables are the means by which we store values and their associated types. Variables are
identified by a given name. Variable declarations allocate memory for the lifetime of the
variable. This depends on where the variable is declared. Variables declared within a block,
{ and }, only exist while that block is executing. There are variables whose values can
change while the program executes, constant variables whose values do not change once
they are given a value, and literal values that never change.

Variables are declared with explicit types. However, the type of a value can be implicitly
inferred by how it is used. Literal values are constants whose type is inferred both by how
they appear and how they are used.

The only way to change the value of a variable is by assigning a value to it. Initialization is
the means of giving a variable or constant a value when it is declared. Otherwise, the value
of variables can only change through direct assignment, which is assignment as the result
of a function return value. Functions receive values via their function parameters when the
function is called; these values are copies of the values when called and are discarded when
the function returns.

Using Variables and Assignment Chapter 4

[94]

Now, you might be wondering how do we manipulate variables, not just copy them? Variables
are changed through assigning the resulting value from an evaluation. C has a rich set of
operators to perform evaluations; we will explore these in the next chapter.

5
Exploring Operators and

Expressions
So far, we have seen how values are stored to and from variables. Simply storing/retrieving
values to/from variables, while important, is only a small part of handling values. What is
far more important is the ability to manipulate values in useful ways, which corresponds to
the ways we manipulate real-world values, such as adding up our restaurant bill or
calculating how much further we have to go to get to grandma's house and how much
longer that might take.

The kinds of manipulations that are reasonable to perform on one or more values depend
entirely on what kinds of values they are, that is, their data types. What makes sense for
one data type may not make sense for another. In this chapter, we will explore the myriad
ways that values can be manipulated.

The following topics will be covered in this chapter:

Understanding expressions and operations
Exploring operations on numbers and understanding the special considerations
regarding numbers
Understanding how to convert values from one type to another—type
conversion and casting
Exploring character operations
Exploring various ways to compare values
Writing a program to print out truth tables
Examining a snippet that performs simple bitwise operations
Exploring the conditional operator
Examining the sequence operator
Exploring compound assignment operators
Examining multiple assignment statements

Exploring Operators and Expressions Chapter 5

[96]

Exploring increment and decrement operators
Writing a program to illustrate grouping
Understanding operator precedence and why to avoid relying upon it (there is an
easier way)

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello,
World!, continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Expressions and operations
What are expressions? Well, in simple terms, an expression is a way of computing a value.
We've seen how to do this with functions and return values. We will now turn to C's basic
set of arithmetic operators for addition, subtraction, multiplication, and division, which are
common in most programming languages. C adds to this a large number of operations that
includes incrementation/decrementation, relational operators, logical operators, and bitwise
manipulation. C further extends assignment operations in useful ways. Finally, C includes
some unusual operators that are not commonly found in other languages, such as
conditional and sequence operators.

The expressions we will explore in this chapter consist of one or more values as variables or
constants combined with the help of operators. Expressions can be complete statements;
however, just as often, expressions are components of complex statements. Operators work
on one or more expressions, where an expression can be simple or complex:

5 is a literal expression that evaluates to the value of 5.
5 + 8 is an arithmetic expression of two simple expressions (literal constants),
which, with the addition operator, evaluates to 13.
A more complex expression, 5 + 8 - 10, is really two binary arithmetical
operations where 5 and 8 are first evaluated to produce an intermediate result,
then 10 is subtracted from it.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Exploring Operators and Expressions Chapter 5

[97]

5; is an expression statement that evaluates to 5 and then moves on to the next
statement. A more useful version of this would be aValue = 5;, which is really
two expressions: the evaluation of 5 and then the assignment of that value to the
aValue variable.

Each value of an expression can be one of the following:

A literal constant
A variable or constant variable
The returned value from a function call

An example expression using all of these would be as follows:

5 + aValue + feetToInches(3.5)

Consider the following statement:

aLength = 5 + aValue + feetToInches(3.5);

The preceding statement is, in reality, five distinct operations in one statement:

The retrieval of the value from the aValue variable
The function call to feetToInches()
The addition of the literal value 5 with the value of aValue giving an
intermediate result
The addition of the function call result to the intermediate result
The assignment of the intermediate result to the aLength variable

An alternative way in which to calculate the same result can involve three simple
statements instead of one complex statement, as follows:

aLength = 5;
aLength = aLength + aValue;
aLength = aLength + feetToInches(3.5);

In this way, the different values are evaluated and added to the aLength variable. Instead
of one assignment, there are three. Instead of a temporary intermediate result, the results of
the additions are accumulated explicitly in the aLength variable as a result of each
statement.

Exploring Operators and Expressions Chapter 5

[98]

A simple program, calcLength.c, that applies each method of using simple and complex
expressions, is as follows:

#include <stdio.h>

int feetToInches(double feet)
{
 int inches = feet * 12;
 return inches;
}

int main(void)
{
 int aValue = 8;
 int aLength = 0;

 aLength = 5 + aValue + feetToInches(3.5);
 printf("Calculated length = %d\n" , aLength);

 aLength = 5;
 aLength = aLength + aValue;
 aLength = aLength + feetToInches(3.5);
 printf("Calculated length = %d\n" , aLength);
}

This program calculates aLength from the sum of a literal value, which, in this case, is 5; a
variable, aValue; and the result of the feetToInches() function. It then prints out the
result to the Terminal. The program itself is not very useful—we have no idea what we are
calculating nor do we know why the values that were chosen are significant. For now,
however, let's just focus on the expression of aLength. aLength is a value calculated by
adding three other values together in one complex statement and again with three simple
statements.

Now, create the calcLength.c file, type in the program, and then save the file. Compile
the program and run it. You should see the following output:

Exploring Operators and Expressions Chapter 5

[99]

As you can see, the single statement for calculating aLength is far less verbose than using
the three statements to do so. However, neither approach is incorrect nor is one method
always preferred over the other. When calculations are relatively simple, the first method
might be clearer and more appropriate. On the other hand, when calculations become much
more complex, the second method might make each step of the computation clearer and
more appropriate. Choosing which method to employ can be a challenge as you are trying
to find a balance between brevity and clarity. Whenever you have to choose one over the
other, always choose clarity.

Introducing operations on numbers
The basic arithmetic operators on numbers are addition (+), subtraction (-), multiplication
(*), and division (/). They are binary operations as they work on one pair of expressions at a
time. They work largely as you would expect them to for both integers (whole numbers)
and real numbers. Division for two real numbers results in a real number. Division for two
whole numbers also results in a whole number; any possible fraction part is discarded.
There is also the modulo operator (%) that will provide the integer remainder of the
division of two integers.

For example, 12.0 / 5.0 (two real numbers) evaluates to 2.5, whereas 12 / 5 (two integers)
evaluates to 2. If we were working only with integers and we needed the remainder of 12 /
5, we would use the remainder operator, %. Thus, 12 % 5 evaluates to another integer, 2.

Many languages have an exponent operator. C does not. To raise an expression to a power,
standard C provides the library function, pow(x , y). The prototype for this function is
double pow(double x , double y);, which raises the value of x to the power of
value y and yields double as its result. To use this function in your program,
include the <math.h> header file wherever the prototype is declared.

Let's create a new file, convertTemperature.c, where we will create two useful
functions, celsiusToFahrenheit() and fahrenheitToCelsius(), as follows:

 // Given a Celsius temperature, convert it to Fahrenheit.
double celsiusToFahrenheit(double degreesC)
{
 double degreesF = (degreesC * 9.0 / 5.0) + 32.0;
 return degreesF;
}

 // Given a Fahrenheit temperature, convert it to Celsius.
double fahrenheitToCelsius(double degreesF)
{

Exploring Operators and Expressions Chapter 5

[100]

 double degreesC = (degreesF - 32) * 5.0 / 9.0 ;
 return degreesC;
}

Each function takes a double value type as an input parameter and returns the converted
value as a double.

There are a couple of things to take note of regarding these functions.

First, we could have made them single-line functions by combining the two statements in
each function body into one, as follows:

 return (degreesC * 9.0 / 5.0) + 32;

Here is another example:

 return (degreesF - 32) * 5.0 / 9.0;

Many programmers would do this. However, as your programming skills advance, this
actually becomes a needless practice—it doesn't really save much of anything, and it makes
debugging with a debugger (an advanced topic) far more difficult and time-consuming.

Many programmers are further tempted to turn these functions into #define macro
symbols (another advanced topic), as follows:

#define celsiusToFahrenheit(x) ((x * 9.0 / 5.0) + 32)
#define fahrenheitToCelsius(x) ((x - 32) * 5.0 / 9.0)

Using macros can be dangerous because we could lose type information or the operations
in such a macro might not be appropriate for the type of value given. Furthermore, we
would have to be extremely careful about how we craft such preprocessor symbols to avoid
unexpected results. For the few characters of typing saved, neither the single-line complex
return statement nor the macro definitions are worth the potential hassle.

There are many temptations of using the preprocessor as much as
possible—that is, to overuse the preprocessor. There lies the road to
perdition! Instead, if you find yourself being pulled by such temptations
for whatever reason, take a look at section Using preprocessor effectively,
from Chapter 25, Understanding Scope.

Second, we use the grouping operator, (and), to ensure our calculations are performed in
the correct order. For now, just know that anything inside (and) is evaluated first. We
will discuss this in more detail later on in this chapter.

Exploring Operators and Expressions Chapter 5

[101]

We can now finish the program that uses the two functions we created. Add the following
to convertTemperature.c before the two function definitions:

#include <stdio.h>

double celsiusToFahrenheit(double degreesC);
double fahrenheitToCelsius(double degreesF);

int main(void) {
 int c = 0;
 int f = 32;
 printf("%4d Celsius is %4d Fahrenheit\n" ,
 c , (int)celsiusToFahrenheit(c));
 printf("%4d Fahrenheit is %4d Celsius\n\n" ,
 f , (int)fahrenheitToCelsius(f));
 c = 100;
 f = 212;
 printf("%4d Celsius is %4d Fahrenheit\n" ,
 c , (int)celsiusToFahrenheit(c));
 printf("%4d Fahrenheit is %4d Celsius\n\n" ,
 f , (int)fahrenheitToCelsius(f));
 c = f = 50;
 printf("%4d Celsius is %4d Fahrenheit\n" ,
 c , (int)celsiusToFahrenheit(c));
 printf("%4d Fahrenheit is %4d Celsius\n\n" ,
 f , (int)fahrenheitToCelsius(f));
 return 0
}

// function definitions here...

With all of the parts in place, save the file, compile it, and then run it. You should see the
following output:

Exploring Operators and Expressions Chapter 5

[102]

Notice how we exercised our functions with known values to verify that they are correct.
First, freezing values for each scale were converted to the other scale. Then, boiling values
for each scale were converted to the other scale. We then tried a simple middle value to see
the results.

You may be wondering how to perform the conversions if we pass values other than
doubles into the function. You might even be inclined to create several functions whose
only difference is the type of variables. Take a look at the
convertTemperature_NoNo.c program. Try to compile it for yourself and see what kind
of errors you get. You will find that, in C, we cannot overload function names; that is, use
the same function name but with different parameter and return types. This is possible with
other languages, but not with C.

In C, each function is simply called by its name; nothing else is used to differentiate one
function call from another. A function having one name with a given type and two
parameters cannot be distinguished from another function of the same name with a
different type and no parameter.

We could try to embed the type names into the function names, such
as fahrenheithDblToCelsiusInt() and celsiusIntToCelsiusDbl(), but this would
be extremely tedious to declare and define for all data types. Additionally, it would be
extremely difficult to use in our programs. Compiler errors, due to mistyping the function
names and even mistyping the calling parameters, would be highly likely and time-
consuming to work through in a large or complicated program. So, how does C deal with
this?

Don't fret! We will consider this very topic in the next section, along with a complete
program on how to use these functions.

Considering the special issues resulting from
operations on numbers
When performing calculations with any numbers, the possible ranges of both the inputs
and outputs must be considered. For each type of number, there is a limit to both its
maximum values and minimum values. These are defined on each system in the C standard
library for that system in the header file, limits.h.

As the programmer, you must ensure that the results of any arithmetic operation are within
the limits of the range for the data type specified, or your program must check for valid
inputs thereby preventing invalid outputs. There are three types of invalid outputs that will
cause the C runtime to abort— Not a Number (NaN), underflow, and overflow.

Exploring Operators and Expressions Chapter 5

[103]

Understanding NaN
A NaN result occurs when the result of an operation is an undefined or an unrepresentable
number.

Consider this equation: y = 1 / x. What is the value of y as x approaches zero from the
positive side? It will become an infinitely large positive value. What then is the value of y as
x approaches zero from the negative side? It will become an infinitely large negative value.
Mathematically, this is called a discontinuity, which cannot be resolved. As we approach
zero from either direction, the result is a value that will be infinitely different when we
approach from one direction or the other (an infinitely large positive value or an infinitely
small negative value). Therefore, division by zero is mathematically undefined. In the
computer, the result is NaN.

NaNs also occur when the data types are real, but the result of the computation is a
complex number, for example, the square root of a negative number or the logarithm of a
negative number. NaNs can also occur where discontinuities appear in inverse
trigonometric functions.

Understanding underflow NaN
Underflow occurs when the result of an arithmetic operation is smaller than the smallest
value that can be represented by the type specified.

For integers, this would mean either a number less than 0 if the integer is unsigned or a
very large negative number if the integer is signed (for instance, -2 is smaller than -1).

For real numbers, this would be a number very, very close to zero (that is, an extremely
small fractional part), resulting from the division of an extremely small number by a very
large number, or the multiplication of two extremely small numbers.

Understanding overflow NaN
Overflow occurs when the result of an arithmetic operation is greater than the greatest
value that can be represented for the type specified.

This would occur with both the addition and multiplication of two extremely large
numbers or the division of a very large number by an extremely small number.

Exploring Operators and Expressions Chapter 5

[104]

Considering precision
When performing calculations with real numbers, we need to be concerned with the
exponential difference between two of them. When one exponent is very large (positive)
and the other very small (negative), we will likely produce either insignificant results or a
NaN. This happens when the calculated result will either represent an insignificant change
to the largest exponent value via addition and subtraction—therefore, precision will be
lost—or be outside the possible range of values via multiplication and division—therefore,
a NaN will result. Adding a very, very small value to a very, very large value may not give
any significant change in the resulting value—again, precision in the result will be lost.

It is only when the exponents are relatively close, and the calculated result is within a
reasonable range, that we can be sure of the accuracy of our result.

Granted that with 64-bit integer values and up to 128-bit real values, the ranges of values
are vast, even beyond ordinary human conception. More often, however, our programs will
use data types that do not provide the extreme limits of possible values. In those cases, the
results of operations should always be given some consideration.

Exploring type conversion
C provides mechanisms that allow you to convert one type of value into another type of the
same value. When there is no loss of precision, in other words, when the conversion of
values results in the same value, C operates without complaining. However, when there is
a possible loss of precision, or if the resulting value is not identical to the original value,
then the C compiler does not provide any such warning.

Understanding implicit type conversion and
values
So, what happens when expressions are performed with operands of different types, for
example, the multiplication of an int with a float, or the subtraction of a double from a
short?

Exploring Operators and Expressions Chapter 5

[105]

To answer that, let's revisit our sizes_ranges2.c program from Chapter 3, Working with
Basic Data Types. There, we saw how different data types took different numbers of bytes;
some are 1 byte, some are 2 bytes, some are 4 bytes, and most values are 8 bytes.

When C encounters an expression of mixed types, it first performs an implicit conversion of
the smallest data type (in bytes) to match the number of bytes in the largest data type size
(in bytes). The conversion occurs such that the value with the narrow range would be
converted into the other with a wider range of values.

Consider the following calculation:

int feet = 11;
double yards = 0.0;
yards = feet / 3;

In this calculation, both the feet variable and the 3 literal are integer values. The resulting
value of the expression is an integer. However, the integer result is implicitly converted
into a double upon assignment. The value of yards is 3.0, which is clearly incorrect. This
error can be corrected by either type casting with feet or by using a decimal literal, as
follows:

yards = (double)feet / 3;

yards = feet / 3.0;

The first statement casts feet to a double and then performs the division; the result is a
double. The second statement specifies a decimal literal, which is interpreted as a double
and performs the division; the result is a double. In both statements, because the result is a
double, there is no conversion needed upon assignment to yards; yards now has the
correct value of 3.66667.

Implicit conversion also occurs when the type of the actual parameter value is different
from the defined parameter type.

A simple conversion is when a smaller type is converted into a larger type. This would
include short integers being converted into long integers or floats being converted into
doubles.

Exploring Operators and Expressions Chapter 5

[106]

Consider the following function declaration and the statement that calls it:

long int add(long int i1 , long int i2) {
 return i1 + i2;
}

int main(void) {
 signed char b1 = 254;
 signed char b2 = 253;
 long int r1;
 r1 = add(b1 , b2);
 printf("%d + %d = %ld\n" , b1 , b2 , r1);
}

The add() function has two parameters, which are both long integers of 8 bytes each. Later,
add() is called with two variables that are 1 byte each. The single-byte values of 254 and
253 are implicitly converted into the wider long int when they are copied into the
function parameters. The result of the addition is 507, which is correct.

Most integers can easily be converted into floats or doubles. In the multiplication of
an int (4 bytes) with a float (4 bytes), an implicit conversion will happen—int will be
converted into a float. The implicit result of the expression would be a float.

In the subtraction of a double (8 bytes) from a short (2 bytes), two conversions happen on
the short— first, it is converted into a long (8 bytes), and then it is converted into a double
(8 bytes). The implicit result of the expression would be a double. Depending on what
happens next in the compound expression, the implicit result may be further converted. If
the next operation involves an explicit type, then the implicit result will be converted into
that type, if necessary. Otherwise, it may again be converted into the widest possible
implicit type for the next operation.

However, when we assign an implicit or explicit result type to a narrower type in the
assignment, a loss of precision is likely. For integers, loss involves the high-order bits (or
the bits with the largest binary values). A value of 32,000,000 assigned to a char will
always be 255. For real numbers, truncation and rounding occur. Conversion from a
double to a float will cause rounding or truncation, depending upon the compiler
implementation. Conversion from a float to an int will cause the fractional part of the
value to be lost.

Consider the following statements:

long int add(long int i1 , long int i2) {
 return i1 + i2;
}

Exploring Operators and Expressions Chapter 5

[107]

int main(void) {
 signed char b1 = 254;
 signed char b2 = 253;
 signed char r1;
 r1 = add(b1 , b2);
 printf("%d + %d = %ld\n" , b1 , b2 , r1);
}

The only change in these statements is the type of the r1 variable; it is now a single byte.
So, while b1 and b2 are widened to long int, add() returns a long int, but this 8-byte
return value must be truncated into a single byte. The value assigned to r1 is incorrect; it
becomes 252.

When performing complicated expressions that require a high degree of precision in the
result, it is always best to perform the calculations in the widest possible data type, and
only at the very end convert the result into a narrower data type.

Let's test this with a simple program. In truncRounding.c, we have two functions: one
that takes a double as a parameter and prints it, and the other that takes a long int as a
parameter and prints it. The following program illustrates implicit type conversion in
which the parameter values are assigned to actual values:

#include <stdio.h>

void doubleFunc(double dbl);
void longintFunc(long int li);

int main(void) {
 float floatValue = 58.73;
 short int intValue = 13;
 longintFunc(intValue);
 longintFunc(floatValue); // possible truncation

 doubleFunc(floatValue);
 doubleFunc(intValue);

 return 0;
}

void doublFunc(double dbl) {
 printf("doubleFunc %.2f\n" , dbl);
}

void longintFunc(long int li) {
 printf("longintFunc %ld\n" , li);
}

Exploring Operators and Expressions Chapter 5

[108]

We have not yet explored the ways in which printf() can format values. For now, simply
take for granted that %.2f will print a double value with 2 decimal places, and that %ld
will print out a long int. This will be explained fully in Chapter 19, Exploring Formatted
Output.

Enter, compile, and run truncRounding.c. You should see the following output:

Notice that no rounding occurs when 58.73 is converted into a long int. However, we
do lose the fractional part; this is called truncation, where the fractional part of the value is
cut off. A short int is properly converted into a double just as a float is properly
converted into a double.

Also, notice that when you compiled and ran truncRounding.c, no compiler error nor
runtime warning was given when the float was converted into a long int resulting in
the loss of precision.

Using explicit type conversion – casting
If we rely on implicit casting, our results may go awry or we may get unexpected results.
To avoid this, we can cause an explicit, yet temporary, type change. We do this by casting.
When we explicitly cast a variable to another type, its value is temporarily converted into
the desired type and then used. The type of the variable and its value does not change.

Any expression can be prefixed by (type) to change its explicit type to the indicated type
for the lifetime of the expression. This lifetime is typically a single statement. The explicit
type is never changed, nor is the value stored in that explicitly typed variable. An example
of this is given in the following program, casting.c:

#include <stdio.h>

int main(void) {
 int numerator = 33;
 int denominator = 5;
 double result = 0.0;
 result = numerator / denominator;

Exploring Operators and Expressions Chapter 5

[109]

 printf("Truncation: %d / %d = %.2g\n" ,
 numerator , denominator , result);
 result = (double) numerator / denominator;
 printf("No truncation: %.2f / %d = %.2f\n" ,
 (double)numerator , denominator , result);

 result = numerator / (double)denominator;
 printf(" %d / %.2f = %.2f\n" ,
 numerator , (double)denominator , result);
 return 0;
}

Enter, compile, and run casting .c. You should see the following output:

In casting.c, we can see, in the first division expression, that there is no casting and no
implicit conversion. Therefore, the result is an int and the fractional part is truncated.
When the int result is assigned to a double, the fractional part has already been lost. In the
second and third division statements, we guarantee that the operation is done on double
values by casting either one of them to double. The other value is then implicitly converted
to double. The result is a double, so when it is assigned to a double, there is no
truncation.

The types of numerators and denominators are not changed permanently but only within the
context of the expression where casting occurs.

Introducing operations on characters
Since characters are internally represented as integers, any of the integer operations can be
applied to them too. However, only a couple of operations make sense to apply to
characters—the additive operators (that is, addition and subtraction). While multiplying
and dividing characters are legal, those operations never produce any practical results:

char - char yields int.
char + int yields char.
char - int yields char.

Exploring Operators and Expressions Chapter 5

[110]

Remember that a char is only one unsigned byte, so any addition or subtraction outside of
the range of 0..255 will yield unexpected results due to the truncation of high-order bits.

A common use of the addition and subtraction of characters is the conversion of a given
ASCII character to uppercase or lowercase. If the character is uppercase, then simply
adding 32 to it will give you its lowercase version. If the character is lowercase, then simply
subtracting 32 from it will give you its uppercase version. An example of this is given in the
following program, convertUpperLower.c:

#include <stdio.h>

int main(void) {
 char lowerChar = 'b';
 char upperChar = 'M';

 char anUpper = lowerChar - 32;
 char aLower = upperChar + 32;

 printf("Lower case '%c' can be changed to upper case '%c'\n" ,
 lowerChar , anUpper);
 printf("Upper case '%c' can be changed to lower case '%c'\n" ,
 upperChar , aLower);
}

Given a lowercase 'b', we convert it into uppercase by subtracting 32 from it. Given an
uppercase 'M', we convert it into lowercase by adding 32 to it. We will explore characters
much more thoroughly in Chapter 15, Working with Strings.

In your editor, create a new file and enter the convertUpperLower.c program. Compile
and run it in a Terminal window. You should see the following output:

Another common use of operations on characters is to convert the character of a digit ('0'
to '9') into its actual numerical value. The value of '0' is not 0 but some other value that
represents that character. To convert a character digit into its numerical value, we simply
subtract the character '0' from it. An example of this is given in the following program,
convertDigitToInt.c:

#include <stdio.h>

int main(void) {

Exploring Operators and Expressions Chapter 5

[111]

 char digit5 = '5';
 char digit8 = '8';

 int sumDigits = digit5 + digit8;
 printf("digit5 + digit8 = '5' + '8' = %d (oh, dear!)\n" ,
 sumDigits);

 char value5 = digit5 - '0'; // get the numerical value of '5'
 char value8 = digit8 - '0'; // get the numerical value of '8'
 sumDigits = value5 + value8;
 printf("value5 + value8 = 5 + 8 = %d\n" ,
 sumDigits);
}

When we simply add characters together, unexpected results are likely to occur. What we
really need to do is to convert each digit character into its corresponding numerical value
and then add those values. The results of that addition are what we want.

In your editor, create a new file and enter the convertDigitToInt.c program. Compile
and run it in a Terminal window. You should see the following output:

In order to understand the difference between a character and its value, we will explore
characters in much greater depth in Chapter 15, Working with Strings.

Exploring logical and relational operators
Early versions of C did not have explicit boolean (true, false) data types. To handle
boolean values, C implicitly converts any zero value into the boolean false value and
implicitly converts any nonzero value into the boolean true value. This implicit conversion
comes in handy very often but must be used with care.

However, when we use #include <stdbool.h>, the official bool types and
true and false values are available to us. We will explore later how we might choose to
define our own boolean values with enumerations (Chapters 9, Creating and Using
Structures) or with custom types (Chapter 11, Working with Arrays).

Exploring Operators and Expressions Chapter 5

[112]

There are three boolean operators:

||: The binary logical OR operator
&&: The binary logical AND operator
!: The unary logical NOT operator

These are logical operators whose results are always boolean true (nonzero) or
false (exactly zero). They are so named in order to differentiate them from bitwise
operators whose results involve a different bit pattern, which we shall learn about shortly.

The first two logical operators evaluate the results of two expressions:

expressionA operator expressionB

When the operator is logical AND &&, if expressionA evaluates to false,
then expressionB is not evaluated (it does not need to be). However, when expressionA
is true, expressionB must be evaluated.

When the operator is logical OR ||, if expressionA evaluates to true, then expressionB
is not evaluated (it does not need to be). However, when expressionA is false,
expressionB must be evaluated.

The unary logical NOT ! operator is employed, therefore, as !expressionC.

It takes the result of expressionC, implicitly converting it into a boolean result and
evaluating it with its opposite boolean result. Therefore, !true becomes false, and
!false becomes true.

In the logical.c program, three tables are printed to show how the logical operators
work. They are known as truth tables. The values are printed as either decimal 1 or 0, but
they are really boolean values. The first truth table is produced with the
printLogicalAND() function, as follows:

void printLogicalAND(bool z, bool o)
{
 bool zero_zero = z && z ;
 bool zero_one = z && o ;
 bool one_zero = o && z ;
 bool one_one = o && o ;

 printf("AND | %1d | %1d\n" , z , o);
 printf(" %1d | %1d | %1d \n" , z , zero_zero , zero_one);
 printf(" %1d | %1d | %1d \n\n" , o , zero_one , one_one);
}

Exploring Operators and Expressions Chapter 5

[113]

The next truth table is produced with the printLogicalOr() function, as follows:

void printLogicalOR(bool z, bool o)
{
 bool zero_zero = z || z ;
 bool zero_one = z || o ;
 bool one_zero = o || z ;
 bool one_one = o || o ;

 printf("OR | %1d | %1d\n" , z , o);
 printf(" %1d | %1d | %1d \n" , z , zero_zero , zero_one);
 printf(" %1d | %1d | %1d \n\n" , o , zero_one , one_one);
}

Finally, the printLogicalNOT() function prints the NOT truth table, as follows:

void printLogicalNOT(bool z, bool o)
{
 bool not_zero = !z ;
 bool not_one = !o ;
 printf("NOT \n");
 printf(" %1d | %1d \n" , z , not_zero);
 printf(" %1d | %1d \n\n" , o , not_one);
}

Create the logicals.c file and enter the three truth table functions. Then, add the
following program code to complete logicals.c:

#include <stdio.h>
#include <stdbool.h>

void printLogicalAND(bool z, bool o);
void printLogicalOR(bool z, bool o);
void printLogicalNOT(bool z, bool o);

int main(void)
{
 bool one = 1;
 bool zero = 0;

 printLogicalAND(zero , one);
 printLogicalOR(zero , one);
 printLogicalNOT(zero , one);
 return 0;
}

Exploring Operators and Expressions Chapter 5

[114]

Save, compile, and run logicals.c. You should see the following output:

These are known as truth tables. When you perform the AND, OR, or NOT operations on a
value in the top row and a value in the left column, the intersecting cell is the result. So, 1
AND 1 yields 1, 1 OR 0 yields 1, and NOT 0 yields 1.

Not all operations can be simply expressed as strictly boolean values. In these cases, there
are the relational operators that produce results that are convenient to regard as true and
false. Statements such as if and while, as we shall learn, test those results.

Relational operators involve the comparison of the result of one expression with the result
of a second expression. They have the same form as the binary logical operators shown
previously. Each of them gives a boolean result. They are as follows:

> (greater than operator): true if expressionA is greater than expressionB.
>= (greater than or equal operator): true if expressionA is greater than or
equal to expressionB.
< (less than operator): true if expressionA is less than expressionB.
<= (less than or equal operator): true if expressionA is less than or equal
to expressionB.
== (equal operator (note that this is different from the = assignment
operator)): true if expressionA is equal to expressionB.
!= (not equal operator): true if expressionA is not equal to expressionB.

We will defer exploring these operators in depth until we get to the if, for, and while
statements in upcoming chapters.

Exploring Operators and Expressions Chapter 5

[115]

Bitwise operators
Bitwise operators manipulate bit patterns in useful ways. The bitwise AND &, OR |, and
XOR ^ operators compare the two operands bit by bit. The bitwise shifting operators shift
all of the bits of the first operand left or right. The bitwise complement changes each bit in a
bit pattern to its opposite bit value.

Each bit in a bit field (8, 16, or 32 bits) could be used as if it was a switch, or flag,
determining whether some feature or characteristic of the program was off (0) or on (1). The
main drawback of using bit fields in this manner is that the meaning of the bit positions can
only be known by reading the source code, assuming that the proper source code is both
available and well commented!

Bitwise operations are less valuable today, not only because memory and CPU registers are
cheap and plentiful, but because they are now expensive operations computationally. They
do, occasionally, find a useful place in some programs, but not often.

The bitwise operators are as follows:

&: Bitwise AND; for example, 1 if both bits are 1.
|: Bitwise OR; for example, 1 if either bit is 1.
^: Bitwise XOR; for example, 1 if either but not both are 1.
<<: Bitwise shift left. Each bit is moved over to the left (the larger bit position). It
is equivalent to value * 2. 0010 becomes 0100.
>>: Bitwise shift right. Each bit is moved over to the right (the smaller bit
position). It is equivalent to value / 2. 0010 becomes 0001.
~: Bitwise complement. Change each bit to its other; for example, 1 to 0, and 0 to
1.

The following is an example of bitwise operators and flags:

 /* flag name */ /* bit pattern */
const unsigned char lowercase 1; /* 0000 0001 */
const unsigned char bold 2; /* 0000 0010 */
const unsigned char italic 4; /* 0000 0100 */
const unsigned char underline 8; /* 0000 1000 */

unsigned char flags = 0;

flags = flags | bold; /* switch on bold */
flags = flags & ~italic; /* switch off italic; */
if((flags & underline) == underline) ... /* test for underline bit 1/on? */
if(flags & underline) ... /* test for underline */

Exploring Operators and Expressions Chapter 5

[116]

Instead of using bitwise fields, custom data types called enumerations and more explicit
data structures, such as hash tables, are often preferred.

The conditional operator
This is also known as the ternary operator. This operator has three
expressions—testExpression, ifTrueExpression, and ifFalseExpression. It looks
like this:

testExpression ? ifTrueExpression : ifFalseExpression

In this expression, testExpression is evaluated. If the testExpression result is true, or
nonzero, then ifTrueExpression is evaluated and its result becomes the expression
result. If the testExpression result is false, or exactly zero, then ifFalseExpression
is evaluated and its result becomes the expression result. Either ifTrueExpression is
evaluated or ifFalseExpression is evaluated—never both.

This operator is useful in odd places, such as setting switches, building string values, and
printing out various messages. In the following example, we'll use it to add pluralization to
a word if it makes sense in the text string:

printf("Length = %d meter%c\n" , len, len == 1 ? '' : 's');

Or, we can use it to print out whole words:

printf("Length = %d %s\n" , len, len == 1 ? "foot" : "feet");

The following program uses these statements:

#include <stdio.h>

void printLength(double meters);

int main(void) {
 printLength(0.0);
 printLength(1.0);
 printLength(12.0 / 39.67); // very nearly 1 foot
 printLength(2.5);
}

void printLength(double meters) {
 double feet = meters * 39.67 / 12.0;
 printf("Length = %f meter%c\n" ,
 meters,

Exploring Operators and Expressions Chapter 5

[117]

 meters == 1.0 ? ' ' : 's');
 printf("Length = %f %s\n" ,
 feet,
 0.99995 < feet && feet < 1.00005 ? "foot" : "feet");
}

In the preceding program, you might be wondering why the statement for determining
"foot" or "feet" has become so much more complex. The reason is that the feet
variable is a computed value. Furthermore, because of the precision of the double data
type, it is extremely unlikely than any computation will be exactly 1.0000…, especially
when division is involved. Therefore, we need to consider values of feet that are
reasonably close to zero but might never be exactly zero. For our simple example, four
significant digits will suffice.

When you type in the printLength.c program, save it, compile it, and run it, you should
see the following output:

Be careful, however, not to overuse the ternary operator for anything other than simple
value replacements. In the next chapter, we'll explore how more explicit solutions are
commonly used for general conditional executions.

The sequence operator
Sometimes, it makes sense to perform a sequence of expressions as though they were a
single statement. This would rarely be used or make sense in a normal statement.

We can string multiple expressions together in sequence using the , operator. Each
expression is evaluated from left to right in the order they appear. The value of the entire
expression is the resultant value of the rightmost expression.

Exploring Operators and Expressions Chapter 5

[118]

For instance, consider the following:

int x = 0, y = 0, z = 0; // declare and initialize.
...
...
x = 3 , y = 4 , z = 5;
...
...
x = 4; y = 3; z = 5;
...
...
x = 5;
y = 12;
z = 13;

The single line assigning all three variables is perfectly valid. However, in this case, there is
little value in doing it. The three variables are either loosely related or not related at all
from what we can tell in this snippet.

The next line makes each assignment its own expression and condenses the code from three
lines to one. While it is also valid, there is seldom a need for this.

This operator, however, does make sense in the context of iterative statements, such as
while() …, for() …, and do … while(). They will be explored in Chapter
7, Exploring Loops and Iteration.

Compound assignment operators
As we have already seen, expressions can be combined in many ways to form compound
expressions. There are some compound expressions that recur so often that C has a set of
operators that make them shorter. In each case, the result is formed by taking the variable
on the left of the operator, performing the operation on it with the value of the expression
on the right, and assigning it back to the variable on the left.

Compound operations are of the form variable operator= expression.

The most common of these is incrementation with an assignment:

counter = counter + 1;

With the += compound operator, this just becomes the following:

counter += 1 ;

Exploring Operators and Expressions Chapter 5

[119]

The full set of compound operators is as follows:

+= assignment with addition to a variable
-= assignment with subtraction to a variable
*= assignment with multiplication to a variable
/= assignment with division (integer or real) to a variable
%= assignment with an integer remaindering to a variable
<<= assignment with bitwise shift left
>>= assignment with bitwise shift right
&= assignment with bitwise AND
^= assignment with bitwise XOR (exclusive OR)
|= assignment with bitwise OR

These operators help to make your computations a bit more condensed and somewhat
clearer.

Multiple assignments in a single expression
We have learned how to combine expressions to make compound expressions. We can also
do this with assignments. For example, we could initialize variables as follows:

int height, width, length;
height = width = length = 0;

The expressions are evaluated from right to left, and the final result of the expression is the
value of the last assignment. Each variable is assigned a value of 0.

Another way to put multiple assignments in a single statement is to use the ,
sequence operator. We could write a simple swap statement in one line with three
variables, as follows:

int first, second, temp;

 // Swap first & second variables.
temp = first, first = second, second = temp;

Exploring Operators and Expressions Chapter 5

[120]

The sequence of three assignments is performed from left to right. This would be
equivalent to the following three statements:

temp = first;
first = second;
second = temp;

Either way is correct. Some might argue that the three assignments are logically associated
because of their commonality to being swapped, so the first way is preferred. Ultimately,
which method you choose is a matter of taste and appropriateness in the given context.
Always choose clarity over obfuscation.

Incremental operators
C provides even shorter shorthand (shortest shorthand?) operators that make the code even
smaller and clearer. These are the autoincrement and autodecrement operators.

Writing the counter = counter + 1; statement is equivalent to a shorter
version, counter += 1;, as we have already learned. However, this simple expression
happens so often, especially when incrementing or decrementing a counter or index, that
there is an even shorter shorthand way to do it. For this, there is the unary increment
operator of counter++; or ++counter;.

In each case, the result of the statement is that the value of the counter has been
incremented by one.

Here are the unary operators:

++ autoincrement by 1, prefix or postfix
-- autodecrement by 1, prefix or postfix

Postfix versus prefix incrementation
There are subtle differences between how that value of the counter is incremented when it is
prefixed (++ comes before the expression is evaluated) or postfixed (++ comes after the
expression).

In prefix notation, ++ is applied to the result of the expression before its value is considered.
In postfix notations, the result of the expression is applied to any other evaluation and then
the ++ operation is performed.

Exploring Operators and Expressions Chapter 5

[121]

Here, an example will be useful.

In this example, we set a value and then print that value using both the prefix and postfix
notations. Finally, the program shows a more predictable method. That is, perform either
method of incrementation as a single statement. The result will always be what we expect:

int main(void)
{
 int aValue = 5;

 // Demonstrate prefix incrementation.
 printf("Initial: %d\n" , aValue);
 printf(" Prefix: %d\n" , ++aValue); // Prefix incrementation.
 printf(" Final: %\n" , aValue);

 aValue = 5; // Reset aValue.

 // Demonstrate postfix incrementation.
 printf("Initial: %d\n" , aValue);
 printf(" Prefix: %d\n" , aValue++); // Postfix incrementation.
 printf(" Final: %\n" , aValue);

 // A more predictable result: increment in isolation.
 aValue = 5;
 ++aValue;
 printf("++aValue (alone) == %d\n" , aValue);
 aValue = 5;
 aValue++;
 printf("aValue++ (alone) == %d\n" , aValue);

 return 0;
}

Enter, compile, and run prefixpostfix.c. You should see the following output:

Exploring Operators and Expressions Chapter 5

[122]

In the output, you can see how the prefix and postfix notations affect (or not) the value
passed to printf(). In prefix autoincrement, the value is first incremented and then
passed to printf(). In postfix autoincrement, the value is passed to printf() as is, and
after printf() is evaluated, the value is then incremented. Additionally, notice that when
these are single, simple statements, both results are identical.

Some C programmers relish jamming together as many expressions and operators as
possible. There is really no good reason to do this. I often go cross-eyed when looking at
such code. In fact, because of the subtle differences in compilers and the possible confusion
about if and when such expressions need to be modified, this practice is discouraged.
Therefore, to avoid the possible side effects of the prefix or postfix incrementations, a better
practice is to put the incrementation on a line by itself, when possible, and use grouping
(we will discuss this in the next section).

Order of operations and grouping
When an expression contains two or more operators, it is essential to know which operation
will be performed first, next, and so on. This is known as the order of evaluation. Not all
operations are evaluated from left to right.

Consider 3 + 4 * 5. Does this evaluate to 35; 3 + 4 = 7 * 5 = 35? Or does this evaluate to 23; 4 *
5 = 20 + 3 = 23?

If, on the other hand, we explicitly group these operations in the manner desired, we
remove all doubt. Either 3 + (4 * 5) or (3 + 4) * 5 is what we actually intend.

C has built-in precedence and associativity of operations that determine how and in what
order operations are performed. Precedence determines which operations have a higher
priority and are, therefore, performed before those with a lower priority. Associativity
refers to how operators of the same precedence are evaluated—from left to right or from
right to left.

Exploring Operators and Expressions Chapter 5

[123]

The following table shows all the operators we have already encountered along with some
that we will encounter in later chapters (such as postfix [] . -> and unary * &). The
highest precedence is the postfix group at the top and the lowest precedence is the
sequence operator at the bottom:

Group Operators Associativity

Postfix () [] . -> Left to right

Unary
! ~ ++ -- + - * & (type)
sizeof

Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shifting >> << Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise complement ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional :? Right to left

Assignment
= += -+ *= /= %= &= != <<=
>>=

Right to left

Sequence , Left to right

Exploring Operators and Expressions Chapter 5

[124]

What is most interesting here is that (1) grouping happens first, and (2) assignment
typically happens last in a statement. Well, this is not quite true. Sequencing happens after
everything else. Typically, though, sequencing is not often used in a single statement. It
can, however, be quite useful as a part of the for complex statement, as we shall learn in
Chapter 7, Exploring Loops and Iterations.

While it is important to know precedence and associativity, I would encourage you to be
very explicit in your expressions and use grouping to make your intentions clear and
unambiguous. As we encounter additional operators in subsequent chapters, we will revisit
this operator precedence table.

Summary
Expressions provide a way of computing a value. Expressions are often constructed from
constants, variables, or function results combined together by operators.

We have explored C's rich set of operators. We have seen how arithmetic operators (such as
addition, subtraction, multiplication, division, and remainder) can apply to different data
types—integers, real numbers, and characters. We touched on character operations; we will
learn much more about these in Chapter 15, Working with Strings. We have learned about
implicit and explicit type conversions. We learned about C boolean values, created truth
tables for logical operators, and learned how relational operations evaluate to boolean
values. We have explored C's shorthand operators when used with assignments and
explored C's shortest shorthand operators for autoincrement and autodecrement. Finally,
we learned about C's operator precedence and how to avoid reliance on it with the
grouping operator. Throughout the chapter, we have written programs to demonstrate how
these operators work. Expressions and operators are the core building blocks of
computational statements. Everything we have learned in this chapter will be an essential
part of any programs we create going forward.

In the next two chapters, Chapter 6, Exploring Conditional Program Flow, and Chapter 7,
Exploring Loops and Iterations, not only will we use these expressions for computations, but
we will also learn how expressions are essential parts of other complex C statements
(if()… else…, for()…, while()…, and do…while()). Our programs can then become
more interesting and more useful.

6
Exploring Conditional Program

Flow
Not only do the values of variables change when a program runs, but the flow of
execution can also change through a program. The order of statement execution can be
altered depending upon the results of conditional expressions. In a conditional program
flow, there is one mandatory branch and one optional branch. If the condition is met, the
first branch, or path, will be taken; if not, the second path will be taken.

We can illustrate such a branching with the following simple example:

Is today Saturday?
If so, do the laundry.
Else, go for a walk.

In this conditional statement, we are instructed to do the laundry if today is Saturday. For
the remaining days that are not Saturday, we are instructed to go for a walk.

This is a simple conditional statement; it has a single conditional expression, a single
mandatory branch, and a single optional branch. We will explore conditional statements
that evaluate multiple conditions. We will also explore conditional statements where
multiple branches may be taken.

The following topics will be covered in this chapter:

Understanding various conditional expressions
Using if()… else… to determine whether a value is even or odd
Using a switch()… statement to give a message based on a single letter
Determining ranges of values using if()… else
if()… else if()… else…

Exploring Conditional Program Flow Chapter 6

[126]

Exploring nesting if()… else… statements
Understanding the pitfalls of nesting if()… else… statements

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Understanding conditional expressions
We have seen how execution progresses from one statement to the next with simple
statements. We have also seen how program execution can be diverted or redirected via a
function call, after which it returns to the same place. We are now going to see how the
flow of execution can change and how statements can be executed or skipped with some of
C's complex statements.

Execution flow will be determined by the result of evaluating conditional expressions,
which we learned about in the previous chapter. Conditional expressions may be either
simple or complex. Complex conditional statements should be clear and unambiguous. If
they cannot be made clear and unambiguous, they should be reworked to be less complex.
When reworking them results in more awkward code, the complex conditional expression
should, however, be thoroughly commented. Careful consideration should be given to the
valid inputs and expected results of the conditional expression.

Conditional expressions appear in very specific places within a complex statement. In every
case, the conditional expression appears enclosed between (and) in the complex
statement. The result will always be evaluated as true or false, regardless of the
expression's complexity.

Some conditional expressions are given as follows:

(bResult == true)
(bResult) /* A compact alternative. */

(status != 0)
(status) /* A compact alternative where
status is */

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Exploring Conditional Program Flow Chapter 6

[127]

 /* only ever false when it is 0
*/
(count < 3)
(count > 0 && count <= maxCount) /* Both must be true for overall
expression */
 /* to be true.
*/

In each case, the result is one of two possible outcomes. In this manner, we can use the
result to perform one pathway, or branch, or the other branch.

Introducing the if()… else… complex
statement
if()… else… is a complex statement that can have two forms—a simple form where the
if()… part is present, and a complete form where both the if()… and else… parts are
present.

In the if()… else… complex statement, either the true path or the false path will be
executed. The path that is not taken will be ignored. In the simplest if()… statement
where there is no false path, the true path is executed only if the conditional expression
is true.

The statement has two syntactical forms, as follows:

The simplest form (no false path), as illustrated in the following code snippet:

if(expression)
 statement1

statement3 /* next statement to be executed */

The complete form (both, the true path and false path), as illustrated in the
following code snippet:

if(expression)
 statement1
else
 statement2

statement3 /* next statement to be executed */

Exploring Conditional Program Flow Chapter 6

[128]

In both the if()… (simple) and if()… else… (complete) statements, expression is
evaluated. If the result is true, statement1 is executed. In the complete form, if the
expression result is false, statement2 is executed. In either case, the execution continues
with the next statement, statement3.

Note that the statements do not indicate whether there is a semicolon or not. This is because
statement1 or statement2 may either be simple statements (which are terminated with a
;) or they may be compound statements, enclosed between { and }. In the latter case, each
statement with the statement block will be terminated by ;, but not the overall block itself.

A simple use of this statement would be in determining whether an integer value is even or
odd. This is a good opportunity to put the % modulo operator into action. A function that
does this using the simple form is illustrated in the following code block:

bool isEven(int num) {
 bool isEven = false; // Initialize with assumption that
 // it's not false.
 if((num % 2) == 0)
 isEven = true;
 return isEven;
}

In the preceding function, we first assume the value is not even, and then test it with a
simple if statement and return the result. Notice that the if()… branch is a single
statement that is only executed if num % 2 is 0. We had to use a relational operator in the
condition because when num is even, num % 2 evaluates to 0, which would then be
converted to the Boolean false, which would not be the correct result. If the condition is
false, the if branch is not executed, and we return the value of isEven.

This function could also be written in a slightly condensed form using multiple return
statements instead of the num local variable, as follows:

bool isEven (int num) {
 if(num % 2)
 return false;
 return true;
}

In the preceding function, we use a very simple conditional that will be nonzero only if num
is odd; therefore, we must return false for the function to be correct. This function has two
exit points, one that will be executed if the test condition is true, and the second that will
be executed when the if branch is not executed. When num is even, the second return
statement will never be executed.

Exploring Conditional Program Flow Chapter 6

[129]

The most condensed version of this function would be as follows:

bool isEven (int num) {
 return !(num % 2)
}

When num is even, num % 2 gives 0 (false), and so we have to apply NOT to return the
correct result.

A function that uses the complete form of this complex statement would be as follows:

bool isOdd (int num) {
 bool isOdd;
 if(num % 2) isOdd = true;
 else isOdd = false;
 return isOdd;
}

In the preceding function, isOdd is not initialized. We must, therefore, ensure that
whatever value is given as input to the isOdd function is assigned either true or false. As
in the preceding examples, each branch of the complex statement is a single statement
assigning a value to isOdd.

To explore various uses of this complex statement, let's begin exploring a function that
calculates leap years. Understanding of leap years in Western civilization did not appear
until the year 1752. In that year, it was then assumed the solar year was 365.25 days, or 356
+ 1/4, hence the use of the modulo of 4. So, in our first approximation of calculating leap
years, our function would look like this:

bool isLeapYear(int year) {
 // Leap years not part of Gregorian calendar until after 1752.
 // Is year before 1751?
 // Yes: return false.
 // No: "fall through" to next condition.
 //
 if(year < 1751) return false;

 // Is year an multiple of 4? (remainder will be 0)
 // Yes: return true.
 // No: "fall through" and return false.
 //
 if((year % 4) == 0) return true;

 return false;
}

Exploring Conditional Program Flow Chapter 6

[130]

In this function block, each time we know whether the given year is a leap year or not, we
return from the function block with that result using return logic to stop the execution of
statements within the function. Note that there are several ways in which we could have
written the second conditional expression, some are which are shown in the following code
block:

if((year % 4) == 0) …
if((year % 4) < 1) …
if(!(year % 4)) …

Of these, the first way is the most explicit, while the last is the most compact. All are
correct.

The remainder of this program looks like this:

#include <stdio.h>
#include <stdbool.h>

bool isLeapYear(int);

int main(void) {
 int year;

 printf("Determine if a year is a leap year or not.\n\n");
 printf("Enter year: ");
 scanf("%d" , &year);

 // A simple version of printing the result.
 if(isLeapYear(year))
 printf("%d year is a leap year\n" , year);
 else
 printf("%d year is not a leap year\n" , year);

 // A more C-like version to print the result.
 printf("%d year is%sa leap year\n" , year , isLeapYear(year) ? " " : "
not ");

 return 0;
}

In the main() code block, we use both an if()… else… statement to print out the result
and a more idiomatic C-like printf() statement, which uses the ternary (conditional)
operator. Either method is fine. In the C-like version, %s represents a string (a sequence of
characters enclosed in"…"), to be filled in the output string.

Exploring Conditional Program Flow Chapter 6

[131]

Create a new file named cle and add the code. Compile the program and run it. You
should see the following output:

But is this program correct? No, it is not, because of leap centuries. The year 2000 is a leap
year but 1900 is not. It turns out that the solar year is slightly less than 365.25 days; it is
actually approximately 365.2425 days, or (365 + 1/4 - 1/100 + 1/400). Notice that we'll have to
account for 1/100—every 100 years—and 1/400—every 400 years. Our function will have to
get a bit more complicated when we revisit it after the next section.

Using a switch()… complex statement
With the if()… else… statement, the conditional expression evaluates to only one of two
values—true or false. But what if we had a single result that could have multiple values,
with each value requiring a different bit of code execution?

For this, we have the switch()… statement. This statement evaluates an expression to a
single result and selects a pathway where the result matches the known values that we care
about.

The syntax of the switch()… statement is as follows:

switch(expression) {
 case constant-1 : statement-1
 case constant-2 : statement-2
 …
 case constant-n : statement-n
 default : statement-default
}

Exploring Conditional Program Flow Chapter 6

[132]

Here, the expression evaluates to a single result. The next part of the statement is called the
case-statement block, which contains one or more case clauses and an optional default:
clause. In the case-statement block, the result is compared to each of the constant values in
each case clause. When they are equal, the code pathway for that case clause is evaluated.
These are indicated by the case <value>: clauses. When none of the specified constants
matches the result, the default pathway is executed, as indicated by the default: clause.

Even though the default: clause is optional, it is always a good idea to have one, even if
only to print an error message. By doing so, you can ensure that your switch() statement
is being used as intended and that you haven't forgotten to account for a changed or a new
value being considered in the switch statement.

As before, each statement could be a simple statement, or it could be a compound
statement.

We could rewrite our leap year calculation to use the switch statement as follows:

 switch(year % 4) {
 case 0 :
 return true;
 case 1 :
 case 2 :
 case 3 :
 default :
 return false;
 }

Notice that for the case 1, case 2, and case 3, there is no statement at all. The
evaluation of the result of the expression continues to the next case. It falls through each
case evaluation into the default case and returns false.

We can simplify this to the only value we really care about, which is 0, as follows:

switch(year % 4) {
 case 0 :
 return true;
 default :
 return false;
}

In the context of the isLeapYear() function, the return statements exit the switch()
statement as well as exiting the function block.

Exploring Conditional Program Flow Chapter 6

[133]

However, there are many times where we need to perform some actions for a given
pathway and then perform no further case comparisons. The match was found and we are
done with the switch statement. In such an instance, we don't want to fall through. We
need a way to exit the pathway as well as exit the case-statement block. For that, there is
the break statement.

The break statement causes the execution to jump out, and to the end of the statement
block, where it is encountered.

To see this in action, we'll write a calc() function that takes two values and a single
character operator. It will return the result of the operation on the two values, as follows:

double calc(double operand1 , double operand2 , char operator) {
 double result = 0.0;

 printf("%g %c %g = " , operand1 , operator , operand2);
 switch(operator) {
 case '+':
 result = operand1 + operand2; break;
 case '-':
 result = operand1 - operand2; break;
 case '*':
 result = operand1 * operand2; break;
 case '/':
 if(operand2 == 0.0) {
 printf("*** ERROR *** division by %g is undefined.\n" ,
 operand2);
 return result;
 } else {
 result = operand1 / operand2;
 }
 break;
 case '%':
 // Remaindering: assume operations on integers (cast first).
 result = (int) operand1 % (int) operand2;
 break;
 default:
 printf("*** ERROR *** unknown operator; operator must be + - * / or
%%\n");
 return result;
 break;
 }
 /* break brings us to here */
 printf("%g\n" , result);
 return result;
}

Exploring Conditional Program Flow Chapter 6

[134]

In this function, double data types are used for each operand so that we can calculate
whatever is given to us. Through implicit type conversion, int and float will be
converted to the wider double type. We can cast the result to the desired type after we
make the function call because it is at the function call where we will know the data types
being given to the function.

For each of the five characters-as-operators that we care about, there is a case-clause where
we perform the desired operation assigning a result. In the case of /, we do a further check
to verify that division by zero is not being done.

Experiment—comment out this if statement and do the division without the check to see
what happens.

In the case of %, we cast each of the operands to int since % is an integer-only operator.

Experiment—remove the casting and add some calls to calc() with various real numbers
to see what happens.

Also, notice the benefit of having a default: clause that handles the case when our calc
program is called with an invalid operator. This kind of built-in error checking becomes
invaluable over the life of a program that may change many times at the hands of many
different programmers.

To complete our calc.c program, the rest of the program is comprised as follows:

#include <stdio.h>
#include <stdbool.h>

double calc(double operand1, double operand2 , char operator);

int main(void) {
 calc(1.0 , 2.0 , '+');
 calc(10.0 , 7.0 , '-');
 calc(4.0 , 2.3 , '*');
 calc(5.0 , 0.0 , '/');
 calc(5.0 , 2.0 , '%');
 calc(1.0 , 2.0 , '?');

 return 0;
}

Exploring Conditional Program Flow Chapter 6

[135]

In this program, we call calc() with all of the valid operators as well as an invalid
operator. In the fourth call to calc(), we also attempt a division by zero. Save this
program, and compile it. You should see the following output:

In each case, the correct result is given for both valid operations and for invalid operations.
Don't forget to try the experiments mentioned.

The switch()… statement is ideal when a single variable is being tested for multiple
values. Next, we'll see a more flexible version of the switch()… statement.

Introducing multiple if()… statements
The switch statement tests a single value. Could we have done this another way?
Yes—with the if()… else if()… else if()… else… construct. We could have
written the calc() function using multiple if()… else… statements, in this way:

double calc(double operand1 , double operand2 , char operator) {
 double result = 0.0;

 printf("%g %c %g = " , operand1 , operator , operand2);
 if(operator == '+')
 result = operand1 + operand2;
 else if(operator == '-')
 result = operand1 - operand2;
 else if(operator == '*')
 result = operand1 * operand2;
 else if(operator == '/'
 if(operand2 == 0.0) {
 printf("*** ERROR *** division by %g is undefined.\n" ,
 operand2);
 return result;
 } else {
 result = operand1 / operand2;
 }

Exploring Conditional Program Flow Chapter 6

[136]

 else if(operator == '%') {
 // Remaindering: assume operations on integers (cast first).
 result = (int) operand1 % (int) operand2;
 } else {
 printf("*** ERROR *** unknown operator; operator must be + - * / or
%%\n");
 return result;
 }
 printf("%g\n" , result);
 return result;
}

This solution, while perfectly fine, introduces a number of concepts that need to be
clarified, as follows:

The first if()… and each else if()… statement correlates directly to each
case : clause of the switch()… statement. The final else… clause
corresponds to the default: clause of the switch statement.
In the first three if()… statements, the true path is a single simple statement.
In the fourth if()… statement, even though there are multiple lines,
the if()… else… statement is itself a single complex statement. Therefore, it is
also a single statement.
This if()… statement is slightly different than the other statements; it uses a
conditional expression for a different variable, and it occurs in the else if()…
branch as a complex statement. This is called a nested if()… statement.

Again, in the last two pathways, each branch has multiple simple statements. To
make them into a single statement, we must make them a part of a compound
statement by enclosing them in { and }.
Experiment—remove the { and } from the last two pathways to see what
happens.

You might argue that for this case, the switch()… statement is clearer and thus
preferred, or you may not think so.

Exploring Conditional Program Flow Chapter 6

[137]

In this code sample, we are comparing a single value to a set of constants. There are
instances where a switch statement is not only unusable but cannot be used. One such
instance is when we want to simplify ranges of values into one or more single values.
Consider the describeTemp() function that, when given a temperature, provides a
relevant description of that temperature. This function is illustrated in the following code
block:

void describeTemp(double degreesF) {
 char* message;
 if(degreesF > 100.0) message = "hot! Stay in the shade.";
 else if(degreesF >= 80.0) message = "perfect weather for swimming.";
 else if(degreesF >= 60.0) message = "very comfortable.";
 else if(degreesF >= 40.0) message = "chilly.";
 else if(degreesF >= 20.0) message = "freezing, but good skiing
weather.";
 else message= "way too cold to do much of anything!" ;
 printf("%g°F is %s\n" , degreesF , message);
}

In this function, a temperature is given as a double type, representing °F. Based on this
value, a series of if()… else… statements select the appropriate range, and then print a
message describing that temperature. The switch()… statement could not be used for this.

We could also have written describeTemp() using the && logical operator, as follows:

void describeTemp(double degreesF) {
 char* message;
 if(degreesF >= 100.0)
 message = "hot! Stay in the shade.";
 if(degreesF < 100.0 && degreesF >= 80.0)
 message = "perfect weather for swimming.";
 if(degreesF < 80.0 && defgredegreesF >= 60.0)
 message = "very comfortable.";
 if(degreesF < 60.0 && degreesF >= 40.0)
 message = "chilly.";
 if(degreesF < 40.0 degreesF >= 20.0)
 message = "freezing, but good skiing weather.";
 if(degreesF < 20.0)
 message= "way too cold to do much of anything!" ;

 printf("%g°F is %s\n" , degreesF , message);
}

Exploring Conditional Program Flow Chapter 6

[138]

In this version of describeTemp(), each if()… statement checks for a range of values of
degreesF. Most of the conditional expressions test an upper limit and a lower limit. Notice
that there is no else()… clause for any of these. Also, notice that for any given value of
degreesF, one—and only one—if()… statement will be satisfied. It is important that all
ranges of possible values are covered by this kind of logic. This is called fall-through logic,
where executions fall through each if()… statement to the very end. We will see further
examples of fall-through logic in the next section.

The full program, which also exercises the various temperature ranges, is found in temp.c.
When you compile and run this program, you see the following output:

We can now return to our leapYear.c program and add the proper logic for leap
centuries. Copy the leapYear1.c program to leapYear2.c, which we will modify. We
keep some parts from the preceding function, but this time, our logic includes both leap
centuries (every 400 years) and non-leap centuries (every 100 years), as follows:

 // isLeapYear logic conforms to algorithm given in
 // https://en.wikipedia.org/wiki/Leap_year.
 //
bool isLeapYear(int year) {
 bool isLeap = false;

 // Leap years not part of Gregorian calendar until after 1752.

 if(year < 1751) // Is is before leap years known.
 isLeap = false;
 else if((year % 4) != 0) // Year is not a multiple of 4.
 isLeap = false;
 else if((year % 400) == 0) // Year is a multiple of 400.
 isLeap = true;
 else if((year % 100) == 0) // Year is multiple of 100.
 isLeap = false;
 else
 isLeap = true; // Year is a multiple of 4 (other conditions 400

Exploring Conditional Program Flow Chapter 6

[139]

 // years, 100 years) have already been considered.
 return isLeap;
}

This underlying logic we are trying to mimic lends itself naturally to a series
of if()…else… statements. We now handle 100-year and 400-year leap years properly.
Save leapYear2.c, compile it, and run it. You should see the following output:

We are again using a sequence of if()… else if()… else… statements to turn a year
value into a simple Boolean result. However, in this function, instead of returning when the
result is known, we assign that result to a local variable, isLeap, and only return it at the
very end of the function block. This method is sometimes preferable to having multiple
return statements in a function, especially when the function becomes long or contains
particularly complicated logic.

Notice that it correctly determines that 2000 is a leap year and that 1900 is not.

Using nested if()… else… statements
Sometimes, we can make the logic of if()… else… statements clearer by nesting if()…
else… statements within either one or both clauses of the if()… else… statements.

In our isLeap() example, someone new to the intricacies of Gregorian calendar
development and the subtleties of century leap year calculation might have to pause and
wonder a bit about our if/else fall-through logic. Actually, this case is pretty simple; much
more tangled examples of such a logic can be found. Nonetheless, we can make our logic a
bit clearer by nesting an if … else … statement within one of the if()… else…
clauses.

Exploring Conditional Program Flow Chapter 6

[140]

Copy leapYear2.c to leapYear3.c, which we will now modify. Our isLeap() function
now looks like this:

bool isLeapYear(int year) {
 bool isLeap = false;

 // Leap years not part of Gregorian calendar until after 1752.
 //
 if(year < 1751) // Is is before leap years known?
 isLeap = false;
 else if((year % 4) != 0) // Year is not a multiple of 4.
 isLeap = false;
 else { // Year is a multiple of 4.
 if((year % 400) == 0)
 isLeap = true;
 else if((year % 100) == 0)
 isLeap = false;
 else
 isLeap = true;
 }
 return isLeap;
}

Again, we use a local variable, isLeap. In the last else clause, we know at that point, that
year is divisible by four. So, now, we nest another if()… else… series of statements to
account for leap centuries. Again, you might argue that this is clearer than before, or you
might not.

Notice, however, that we enclosed—nested—the last series of if()… else… statements in
a statement block. This was done not only to make its purpose clearer to other
programmers but also to avoid the dangling else problem.

The dangling else… problem
When multiple statements are written in if()… else… statements where a single
statement is expected, surprising results may occur. This is sometimes called the dangling
else problem and is illustrated in the following code snippet:

if(x == 0) if(y == 0) printf("y equals 0\n");
else printf("what does not equal 0\n");

Exploring Conditional Program Flow Chapter 6

[141]

To which if()… does the else… belong—the first one or the second one? To correct this
possible ambiguity, it is often best to always use compound statements in if()… and
else… clauses to make your intention unambiguous. Many compilers will give an error
such as the following: warning: add explicit braces to avoid dangling else
[-Wdangling-else].

On the other hand, some do not. The best way to remove doubt is to use brackets to
associate the else… clause with the proper if()… clause. The following code snippet will
remove both ambiguity and the compiler warning:

if(x == 0) {
 if(y == 0) printf("y equals 0\n");
}
else printf("x does not equal 0\n");

In the usage shown in the preceding code block, the else… clause is now clearly associated
with the first if()…, and we see x does not equal 0 in our output.

In the following code block, the else… clause is now clearly associated with the
second if()… clause, and we'll see y does not equal 0 in our output. The
first if()… statement has no else… clause, as can be seen here:

if(x == 0) {
 if(y == 0) printf("y equals 0\n");
 else printf("y does not equal 0\n");
}

Notice how the if(y == 0) statement is nested within the if(x == 0) statement.

In my own programming experience, whenever I have begun writing an if()… else…
statement, rarely has each clause been limited to a single statement. Most often, as I add
more logic to the if()… else… statement, I have to go back and turn them into
compound statements with { and }. As a consequence, I now always begin writing each
clause as compound statements to avoid having to go back and add them in. Before I begin
adding the conditional expression and statements in either of the compound statements,
my initial entry looks like this:

if() {
 // blah blah blahblah
} else {
 // gabba gabba gab gab
}

Exploring Conditional Program Flow Chapter 6

[142]

You may find that the } else { line is better when broken into three separate lines. The
choice is a matter of personal style. This is illustrated in the following code snippet:

if() {
 // blah blah blahblah
}
else {
 // gabba gabba gab gab
}

In the first code example, the else… closing block and the if() opening block are
combined on one line. In the second code example, each is on a line by itself. The former is
a bit more compact, while the latter is less so. Either form is acceptable, and their use will
depend upon the length and complexity of the code in the enclosed blocks.

Stylistically, we could also begin each of the if blocks with an opening { on its own line, as
follows:

if()
{
 // blah blah blahblah
} else {
 // gabba gabba gab gab
}

Alternatively, we could do this:

if() {
 // blah, blah blah blah.
}
else
{
 // gabba gabba, gab gab.
}

Some people prefer block openings on their own line, while others prefer block openings at
the end of the conditional statement. Again, either way is correct. Which way is used
depends on both personal preference and the necessity of following the conventions of the
existing code base; consistency is paramount.

Exploring Conditional Program Flow Chapter 6

[143]

Summary
From this chapter, we learned that we can not only alter program flow with function calls
but also execute or omit program statements through the use of conditional statements. The
switch()… statement operates on a single value, comparing it to the desired set of
possible constant values and executing the pathway that matches the constant value. The
if()… else… statement has a much wider variety of forms and uses. if()… else…
statements can be chained into longer sequences to mimic the switch()… statement and to
provide a richer set of conditions than possible with switch()…. if()… else…
statements can also be nested in one or both clauses to either make the purpose of that
branch clear or the condition for each pathway less complex.

In these conditional statements, execution remains straightforward, from top to bottom,
where only specific parts of the statement are executed. In the next chapter, we'll see how to
perform multiple iterations of the same code path, with various forms of looping and the
somewhat stigmatized goto statement.

7
Exploring Loops and Iteration

Some operations need to be repeated one or more times before their result is completely
evaluated. The code to be repeated could be copied the required number of times, but this
would be cumbersome. Instead, for this, there are loops—for …, while …, and do …
while loops. Loops are for statements that must be evaluated multiple times. We will
explore C loops. After considering loops, the much-maligned goto statement will be
considered.

The following topics will be covered in this chapter:

Understanding brute-force repetition and why it might be bad
Exploring looping with the while()… statement
Exploring looping with the for()… statement
Exploring looping with the do … while() statement
Understanding when you would use each of these looping statements
Understanding how loops could be interchanged, if necessary
Exploring the good, the bad, and the ugly of using goto
Exploring safe alternatives to goto—continue and break
Understanding the appropriate use of loops that never end

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello,
World!, continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Exploring Loops and Iteration Chapter 7

[145]

Understanding repetition
Very often, we need to perform a series of statements repeatedly. We might want to
perform a calculation on each member of a set of values, or we might want to perform a
calculation using all of the members in a set of values. Given a collection of values, we also
might want to iterate over the whole collection to find the desired value, to count all the
values, to perform some kind of calculation on them, or to manipulate the set in some
way—say, to sort it.

There are a number of ways to do this. The simplest, yet most restrictive way is the brute-
force method. This can be done regardless of the language being used. A more dynamic
and flexible method is to iterate or repeatedly loop. C provides three interrelated looping
statements—while()… , for()…, and do…while(). Each of them has a control or
continuation expression, and a loop body. The most general form of these is the while()…
loop. Lastly, there is the archaic goto label method of looping. Unlike other languages,
there is no repeat … until() statement; such a statement can easily be constructed from
any of the others.

Each looping statement consists of the following two basic parts:

The loop continuation expression
The body of the loop

When the loop continuation expression evaluates to true, the body of the loop is executed.
The execution then returns to the continuation expression, evaluates it, and, if true, the
body of the loop is again executed. This cycle repeats until the continuation expression
evaluates to false; the loop ends, and the execution commences after the end of the loop
body.

There are two general types of continuation expressions used for looping statements, as
follows:

Counter-controlled looping, where the number of iterations is dependent upon a
count of some kind. The desired number of iterations is known beforehand. The
counter may be increasing or decreasing.
Condition- or sentinel-controlled looping, where the number of iterations is
dependent upon some condition to remain true for the loop to continue. The
actual number of iterations is not known. A sentinel is a value that must attain a
certain state before the loop completes.

We will explore counter-controlled looping in this chapter and return to sentinel-controlled
looping in later chapters when we get input from the console and read input from files.

Exploring Loops and Iteration Chapter 7

[146]

C also provides some additional looping control mechanisms such as break, which we saw
in the switch()… statement in Chapter 6, Exploring Conditional Program Flow, and
continue. These provide even greater looping control when simple counters or sentinel
values aren't enough to meet our needs in special circumstances.

To boost our motivation for iteration and repetition, let's visit a problem that was presented
to the young, brilliant mathematician Gauss in the 17th century. When Gauss was in
elementary school, to fill time before a recess, the teacher assigned the task of adding
numbers 1 to 100 (or some such range). While all the other students were busily performing
the tedious task of adding each number one by one (brute-force), young Gauss came up
with a simple yet elegant equation to perform the task nearly instantly. His general solution
was the following equation:

sum(n) = n * (n+1) / 2

Here, n is the highest number in a sequence of natural numbers (integers) beginning at 1.

So, throughout this chapter, we will explore the problem presented to the
young Gauss—starting with his insightful equation and then moving on to various
programmatic solutions—first, using brute-force addition, which Gauss cleverly avoided,
then, performing the task using each of the looping constructs C provides, and, finally,
looping with the dreaded goto statement.

The following code snippet shows Gauss's equation in a sumNviaGauss() C function:

int sumNviaGauss(int N) {
 int sum = 0;
 sum = N * (N+1) / 2;
 return sum;
}

The input parameter is N. The result is the sum of integer values 1 .. N. This function is a
part of the gauss_bruteforce.c program and there are links in that program for
delightful explanations of this equation, along with the variations of it, which we need not
go into here. The curious reader can download gauss_bruteforce.c and explore the
links given there.

Note that the N * (N+1) / 2 equation requires () because * and / have higher
precedence than +. () has higher precedence than all the operators here, and thus gives us
the desired result.

Exploring Loops and Iteration Chapter 7

[147]

What is the point of providing this solution here? As C programmers, we have all of these
wonderful C statements that we can use to construct complex calculations for solving a
complex mathematical problem. However, we must remember that there may be an
equation or algorithm that exists already that is much simpler and more generalized than
anything that we may hope to concoct. For this reason, every programmer should be
familiar with the Numerical Recipes in X books that provide complex mathematical solutions
in the X language, where X is either C, Fortran, or C++, to some of the most demanding and
challenging math problems that have vexed mathematicians, scientists, engineers,
computer scientists, and operations researchers alike. Ignore such works at your peril!

As an aside, I should mention that some of the most interesting and useful
algorithms I've ever encountered as a computer scientist have come from
the operations research guys. They seem to be always attempting to solve
some really difficult, yet important problems. But that is a topic out of
scope for this book.

While young Gauss abhorred the use of brute force to solve the problem he was given,
sometimes brute force may be the only way or even the best way, but not often. We
examine that next.

Understanding brute-force repetition
In brute-force repetition, a statement or series of statements to be repeated is simply copied
over and over the required number of times. This is the most restrictive form of repetition
because the number of repeats is hardcoded in and can't be changed at runtime.

There are several other downsides to this type of repetition. First, what if you had to change
one or more of the statements that have been copied over and over? Tedious would be the
word to describe the work required to either change all of them (error-prone) or to delete,
correct, and recopy the lines (also error-prone). Another downside is that it makes the code
unnecessarily bulky. Copying 10 lines is one thing, but 100 or 1,000 is another thing
altogether.

However, there are also times when copying a single statement multiple times is actually
necessary. The situation where this occurs is in an advanced topic involving loop unrolling,
which we will not cover in this book. If you are still interested after you have finished this
chapter, you can perform your own internet search to find out more. It is, as a reminder, an
advanced topic related to specialized high-performance situations. You will have many
other fish to fry before—if ever—you will need to master that topic.

Exploring Loops and Iteration Chapter 7

[148]

The sum100viaBruteForce() function is a brute-force function to perform our desired
task, and is shown in the following code block:

int sum100bruteForce(void) {
 int sum = 0;
 sum = 1;
 sum += 2;
 sum += 3;
 …
 …
 sum += 99;
 sum += 100;
 return sum;
}

Notice that we do not include every single line of this over-100-line function. It is very
tedious and dull. Yet, in fact, it correctly calculates the sum of 1 .. 100. This function only
works for this sequence and no other. You'd need a different brute-force method to
calculate 1 .. 10 or 1 .. 50. Yawn. Even more tedium.

Here is a second version, a bit more general, using some useful C operators—the
sum100viaBruteForce2() function, illustrated in the following code block:

int sum100bruteForce2(void) {
 int sum = 0;
 int num = 1;

 sum = num;
 sum += ++num;
 sum += ++num;
 sum += ++num;
 …
 …
 sum += ++num;
 sum += ++num; // 100

 return sum;
}

Notice, again, that we do not include every single tedious line of this over-100-line function.
While this approach removes the need to actually type in each value from 1 to 100, it is
equally tedious. I found that it was actually more difficult to create than the first version
(that is, sum100viaBruteForce()) because it was hard to keep track of how many sum
+= ++num; lines I had copied. You'll see in the gauss_bruteforce.c file that I added
comments to help keep things straightfoward and simple.

Exploring Loops and Iteration Chapter 7

[149]

Each of these functions is over 100 lines long. That's like over 100 miles of dry, dusty, dull
road to drive across on a hot, arid, boring day with no rest stops and no ice water. The
compiler might not care but those who will later have to read/update your code will.

When you enter these functions yourself, it is acceptable in this case to use copy and paste
to help overcome the tedium.

The main() function for gauss_bruteforce.c is as follows:

#include <stdio.h>
#include <stdbool.h>

int sum100bruteForce(void);
int sum100bruteForce2(void);
int sumNviaGauss(int N);

int main(void) {
 int n = 100;
 printf("The sum of 1..100 = %d (via brute force)\n" ,
 sum100bruteForce());
 printf("The sum of 1..100 = %d (via brute force2)\n" ,
 sum100bruteForce2());
 printf("The sum of 1..%d = %d (via Gaussian insight)\n" ,
 n , sumNviaGauss(n));
 return 0;
}

Create the gauss_bruteforce.c file, then enter the main() function and the
three sum functions. Compile the program with the cc gauss_bruteforce.c -o
gauss_bruteforce command. The -o command option followed by a name generates an
executable file with that name instead of a.out (the default executable name that we have
been using before now). Run the program. You should see the following output
from gauss_bruteforce:

In the preceding screenshot, you can see that each of the three methods to calculate the sum
of 1..100 gives us the same result.

Thankfully, there are better ways (well, still not as good as Gauss's original solution, but
better from a C programming perspective) to solve this problem, and—happily for us—to
illustrate looping.

Exploring Loops and Iteration Chapter 7

[150]

As we examine the various forms of repetitive methods, we will solve Gauss's problem
each time. This approach affords a couple of advantages. As you work with loop iteration
counters, any starting or stopping errors made in the loop counter condition will result in a
different sum; so, by using the same problem that we have already solved, we can verify
our code. Also, since we've already solved the problem in two ways, it will not be new, and
will even become familiar. Therefore, we can focus more on the variations in the syntax of
each looping method.

Introducing the while()… statement
while()… statement has the following syntax:

while(continuation_expression) statement_body

 continuation_expression is evaluated. If its result is true, statement_body is
executed and the process repeats. When continuation_expression evaluates to false,
the loop ends; the execution resumes after the statement_body. If the
continuation_expression initially evaluates to false, the statement_body loop is
never executed.

The statement_body is—or may be—a single statement, or even the null statement (a
single ; without an expression), but most often, it is a compound statement. Note that there
is no semicolon specified as a part of the while()… statement. A semicolon would appear
as a part of a single statement in a statement_body, or would be absent in the case of the
statement_body consisting of a { … } compound statement.

Also note that, within the statement_body, there must be some means to change the
value(s) used in the continuation_expression. If not, the loop will either never execute
or it will never terminate once begun. The latter condition is also known as an infinite
loop. Therefore, in counter-controlled looping, the counter must be changed somewhere in
the body of the loop.

Returning to Gauss's problem, we'll use a while()… loop in a function that takes N as a
parameter, which is the highest value of the sequence to sum, and returns that sum of 1 to
N. We need a variable to store the sum that is initialized to 0. We'll also need a counter to
keep track of our iterations, also initialized to 0. The counter will have a range of 0 to (N-1).
Our loop condition is: is the counter less than N? When the counter reaches the value of N,
our loop condition will be false (N is not less than N) and our loop will stop. So, in the
body of our loop, we accumulate the sum and we increment our counter. When looping has
completed, the sum is returned.

Exploring Loops and Iteration Chapter 7

[151]

The sumNviaWhile() function is shown in the gauss_loops.c program, as follows:

int sumNviaWhile(int N) {
 int sum = 0;
 int num = 0;
 while(num < N) // num: 0..99 (100 is not less than 100) {
 sum += (num+1); // Off-by-one: shift 0..99 to 1..100.
 num++;
 }
 return sum;
}

There is a bit of a wrinkle; this wrinkle is known as the off-by-one problem. This problem has
many forms in other programming languages and not just in C. Notice that our counter
starts at 0 and goes to N-1, to give us N iterations. We could start at 1 and check if the
counter is less than N+1. Or, we could also start at 0 and test if the counter is less than or
equal to N. This second approach would give a correct answer for this problem but would
give us N+1 iterations instead of just N iterations. Starting at 0 and going to, say 10, would
altogether be 11 iterations.

There is a valid reason we have chosen to start our counter at zero. It has more to do with C
array indexes, which we will encounter in Chapter 11, Working with Arrays. This may seem
confusing now, yet zero-based counting/indexing is a very consistent principle in C.
Getting accustomed to it now will save many more headaches when working with array
indexing and pointer addition later.

To help mitigate any possible confusion with counter ranges, I have found it is always
helpful to indicate the expected range of values (that the counter or index will take) in
comments. In that way, necessary adjustments, as done previously, can be made to any
other calculations that use that counter.

On the other hand, there is another way. (There is always another way in C, as in most
programming languages!) In this second way of implementing the while()… loop, instead
of counting up, we'll count down. Furthermore, we'll use the N input parameter value as
the counter so that in this way, we don't need a separate counting variable. Remember that
the function parameters are copied from the caller and also that they become local variables
within the function then. We'll use N as a local variable to be our counter. Instead of
incrementing our counter, we'll decrement it. The valid range will thus be from N down to
1. In this way, we'll let 0 be the stopping condition because it also evaluates to false.

Exploring Loops and Iteration Chapter 7

[152]

Our continuation_expression is simply evaluating whether N is nonzero to continue.
We could have also used while(N > 0), which would be only slightly more explicit,
even if redundant. In addition, we get some minor benefits of not having to deal with the
off-by-one problem. Then, our counter is also an accurate representation of the value we
want to add.

The revised sumNviaWhile2() function in the gauss_loops2.c program is shown in the
following code block:

int sumNviaWhile2(int N) {
 int sum = 0;
 while(N) { // N: N down to 1 (stops at 0).
 sum += N;
 N--;
 }
 return sum;
}

Is one approach better than the other? Not really. And certainly not in these examples,
because our problem is rather simple. When the statement_body becomes more complex,
one approach may be better in terms of clarity and readability than the other. The point
here is to show how thinking about the problem in a slightly different way can make the
code clearer sometimes. In this instance, the difference is in how the count is performed.

Introducing the for()… statement
The for()… statement has the following syntax:

for(counter_initialization ; continuation_expression ; counter_increment)
 statement_body

The for()… statement consists of a three-part control expression and a statement body.
The control expression is made up of a counter_initialization expression,
a continuation_expression, and a counter_increment expression, where a semicolon
separates each part of an expression. Each one has a well-defined purpose. Their positions
cannot be interchanged.

Exploring Loops and Iteration Chapter 7

[153]

Upon executing the for()… statement, the counter_initialization expression is
evaluated. This is performed only once. Then, continuation_expression is evaluated. If
its result is true, the statement_body is executed. At the end of statement_body, the
counter_increment expression is evaluated. Then, the process repeats, with the
evaluation of continuation_expression. When continuation_expression evaluates
to false, the loop ends; the execution resumes after the statement_body. If the
continuation_expression initially evaluates to false, the statement_body loop is
never executed.

The statement_body may be a single statement or even a null statement (a
single ; without an expression) but, most often, it is a compound statement. Note that there
is no semicolon specified as a part of the for()… statement. A semicolon would appear as
part of a single statement in the statement_body or would be absent in the case of the
statement_body consisting of the { … } compound statement.

In the for()… statement, all of the control elements are present at the beginning of the
loop. This design was intentional so as to keep all of the control elements together. This
construct is particularly useful when the statement_body is either complex or overly
long. There is no possibility of losing track of the control elements since they are all
together at the beginning.

The counter_increment expression may be any expression that increments, decrements,
or otherwise alters the counter. Also, when the counter is both declared and initialized
within a for loop, it may not be used outside of that for loop's statement_body, much
like the function parameters that are local to the function body. We will explore this
concept in greater detail in Chapter 25, Understanding Scope.

Returning to Gauss's problem, we'll use a for()… loop in a function that takes as a
parameter N, the highest value of the sequence to sum, and returns that sum of 1 to N. We
need a variable to store the sum, initialized to 0. The counter we'll need will be both
declared and initialized to 0 in the first part of the for()… statement. The counter will
have the range of 0 to (N-1); when it reaches N, our loop condition is the counter less than N?
will be false (N is not less than N) and our loop will stop. So, in the body of our loop, we
need to only accumulate the sum. When looping has completed, the sum is returned.

The sumNviaFor() function in the gauss_loop.c program is shown in the following code
block:

int sumNviaFor(int N) {
 int sum = 0;
 for(int num = 0 ; num < N ; num++) { // num: 0..99 (it's a C thing)
 sum += (num+1); // Off-by-one: shift 0..99 to 1..100.

Exploring Loops and Iteration Chapter 7

[154]

 }
 return sum;
}

As we saw with the while()... loop, we have encountered and had to deal with the off-
by-one problem. But also, as before, there is a second way to perform this loop. In this
second way of implementing the for()… loop, instead of counting up, we'll count down.
Again, we'll use the input parameter value (N) as the counter, so we don't need a separate
counting variable. Remember that function parameters are copied from the caller, and also
that they then become local variables within the function. We'll use N as a local variable to
be our counter. Instead of incrementing our counter, we'll decrement it and let 0 be the
stopping condition (as well as evaluate it to false).

As before, we get the somewhat minor benefit of not having to deal with the off-by-one
problem. Then, our counter is also an accurate representation of the value we want to add.

The revised sumNviaFor2() function in the gauss_loop2.c program is shown as follows:

int sumNviaFor2(int N) {
 int sum = 0;
 for(int i = N ; // range: 100..1
 i > 0 ; // stops at 1.
 i--) {
 sum += i; // No off-by-one.
 }
 return sum;
}

One final thing to notice in sumNviaFor2() is that the parts of the control expression are
formatted such that each part is now on its own line. Doing this allows for more complex
expressions and comments for each part.

For example, let's assume we want to simultaneously count up and down, using two
counters. We can initialize more than one counter in
the counter_initialization expression by using the , sequence operator. We can also
increment more than one counter in the counter_increment expression, again by using
the , operator. Our for()… condition might look like this:

for(int i = 0 , int j = maxLen ;
 (i < maxLen) && (j > 0) ;
 i++ , j--) {
 ...
}

Exploring Loops and Iteration Chapter 7

[155]

However, the indentation should be used to keep the control expression clearly identifiable
from the loop body. In this simple example, such code formatting is unnecessary and
should only be used where the control expression becomes more complex.

Introducing the do … while() statement
The do…while() statement has the following syntax:

do statement_body while(continuation_expression);

The only difference between this statement and the while()_ statement is that, in the
do…while() statement, statement_body is executed before
continuation_expression is evaluated. If the continuation_expression result is
true, the loop repeats. When continuation_expression evaluates to false, the loop
ends. Note also the terminating semicolon. If the continuation_expression initially
evaluates to false, the statement_body loop is executed once and only once.

Returning again to Gauss's problem, the similarities to the while()_ statement are clear. In
fact, for this problem, there is a very little difference between the while()_ and
do…while() statements.

The sumNviaDoWhile() function in the gauss_loop.c program can be seen in the
following code block:

int sumNviaDoWhile(int N) {
 int sum = 0;
 int num = 0;
 do {
 sum += (num+1); // Off-by-one: shift 0..99 to 1..100.
 num++;
 } while (num < N); // num: 0..99 (100 is not less than 100).
 return sum;
}

Notice that, because the statement_body consists of more than one statement, a statement
block is required; otherwise, a compiler error would result.

And, as we have already seen before, we can rework this function to use N as our counter
and decrement it.

Exploring Loops and Iteration Chapter 7

[156]

The sumNviaDoWhile2() function in the gauss_loop2.c program can be seen in the
following code block:

int sumNviaDoWhile2(int N) {
 int sum = 0;
 do {
 sum += N;
 N--;
 } while (N); // range: N down to 1 (stops at 0).
 return sum;
}

Before going any further, it's time to create not one but two programs, gauss_loop.c,
and gauss_loop2.c.

The main() function of the gauss_loop.c program can be seen in the following code
block:

#include <stdio.h>
#include <stdbool.h>

int sumNviaFor(int n);
int sumNviaWhile(int n);
int sumNviaDoWhile(int n);

int main(void) {
 int n = 100;
 printf("The sum of 1..%d = %d (via while() ... loop)\n" ,
 n , sumNviaWhile(n));
 printf("The sum of 1..%d = %d (via for() ... loop)\n" ,
 n , sumNviaFor(n));
 printf("The sum of 1..%d = %d (via do...while() loop)\n" ,
 n , sumNviaDoWhile(n));
 return 0;
}

Create the gauss_loops.c file, and enter the main() function, and the three sum function.
Compile the program with the cc gauss_loops.c -o gauss_loops command. Run the
program. You should see the following output from gauss_loops:

Exploring Loops and Iteration Chapter 7

[157]

In the preceding screenshot, you can see that each of the three looping methods to calculate
the sum of 1..100 gives us the same result as well as the identical result from
gauss_bruteforce.

The main body of gauss_loop2.c is as follows:

#include <stdio.h>
#include <stdbool.h>

int sumNviaFor2(int N);
int sumNviaWhile2(int N);
int sumNviaDoWhile2(int N);

int main(void) {
 int n = 100;
 printf("The sum of 1..%d = %d (via while() ... loop 2)\n" ,
 n , sumNviaWhile2(n));
 printf("The sum of 1..%d = %d (via for() ... loop 2)\n" ,
 n , sumNviaFor2(n));
 printf("The sum of 1..%d = %d (via do...while() loop 2)\n",
 n , sumNviaDoWhile2(n));
 return 0;
}

Create the gauss_loops2.c file, enter the main() function, and the three sum functions.
Compile the program with the cc gauss_loops2.c -o gauss_loops2 command. Run
the program. You should see the following output:

In the preceding screenshot, you can see that each of the alternate three looping methods to
calculate the sum of 1..100 gives us the same result as we have seen before.

Understanding loop equivalency
After having typed in both versions of each loop and run them, you may have begun to see
some similarities between each of the looping statements. In fact, for counter-controlled
looping, each of them is readily interchangeable.

Exploring Loops and Iteration Chapter 7

[158]

To illustrate, let's examine each counter-controlled loop by comparing each of their
essential parts.

The counter-controlled while()… loop has the following syntax:

counter_initialization;
while(continuation_expression) {
 statement_body
 counter_increment;
}

Notice that both counter initialization and counter increments have been added to the basic
syntax of the while()… loop and that they are somewhat scattered about.

The counter-controlled for()… loop has the following syntax:

for(counter_initialization ; continuation_expression ; counter_increment)
 statement_body

It would be perfectly logical to assume that the for()… loop is really just a special case of
the while()… loop.

The counter-controlled do…while() loop has the following syntax:

counter_initialization;
do {
 statement_body
 counter_increment;
} while(continuation_expression);

Notice that, as with the while()… loop, the counter-control expressions have been added
to the basic syntax of the do…while() loop and are also somewhat scattered about the
loop.

For counter-controlled looping, the for()… loop is a natural first choice over the other
two. Nonetheless, any of these may be used. However, when we look at sentinel-controlled
loops, these equivalencies begin to break down. We will see that the while()… loop
provides far more general use in many cases, especially when looking for a sentinel value
to end continuation.

Exploring Loops and Iteration Chapter 7

[159]

Understanding unconditional branching –
the dos and (mostly) don'ts of goto
The goto statement is an immediate and unconditional transfer of program execution to
the specified label within a function block. goto causes execution to jump to the label. In
current C, unlike the bad old days, goto may not jump out of a function block, and so it
may neither jump out of one function into the middle of another nor out of one program
into another program (neither were uncommon in those days).

The goto statement consists of two parts. First, there must be a label declared either as a
standalone statement, as follows—label_identifier :—or as a prefix to any other
statement, like so: label_identifier : statement.

And secondly, there must be the goto statement to that label_identifier. The syntax
for the goto statement is as follows:

goto label_identifier;

The reason for the goto statement being shunned comes from the bad old days before
structured programming. The main tenet of structured programming was one entry point,
one exit point. We don't hear much about this anymore because, well, programmers have
been trained better and languages—starting with C—have become more disciplined, so that
goto is not really needed. The main aim of the structured programming movement was to
counter the spaghetti code of earlier programs, where goto ruled because a more
disciplined mechanism did not exist, and the use of goto in some cases had got completely
out of control. Programs jumped from here to there, and to anywhere, and code became
extremely difficult to understand or modify (because the goto statement made it
impossible to know all the possible flows of control). Often, the answer to the question,
How did we end up here? or What was the code path that got us to this point? was not
easily discernible, if it was discernible at all. Thanks to C, and subsequent derivative
languages of C, the undisciplined use of goto was reined in.

The creators of C felt there was occasionally, albeit rarely, a need for goto, and so they left
it in the language. In C, goto is highly constrained in terms of where it can—ahem—go to.
Unlike the bad old days, you cannot use goto in a label inside another function. You cannot
use goto out of the current function. You cannot use goto in another program, nor can you
use goto somewhere in the runtime library or into system code. All these things were done
and were often done for expediency, only without regard to the long-term maintainability
of the code. Mayhem ruled. But no longer, at least with respect to goto.

Exploring Loops and Iteration Chapter 7

[160]

Today, in C, the goto statement can only jump to a label within the same function. goto is
extremely handy in the case of deeply nested if… else… statements or deeply nested
looping statements when you just need to get out and move on. While this is sometimes
necessary, it should be considered rarely necessary. It is also handy at times in high-
performance computing. So, for those reasons alone, we consider it here.

Besides, C provides two other extremely useful and disciplined statements that rein in the
undisciplined and chaotic use of goto, as we will see in the next section.

For the remainder of this section, we'll look at structured uses of goto and how to
implement the looping statements we've already seen using goto. In each case, there is a
pair of labels identifying the beginning and end of what in other statements would be the
loop block.

In our first example, the end-of-loop label is not needed; it is there for clarity, as shown in
the following example of the sumNviaGoto_Do() function of the gauss_goto.c program:

int sumNviaGoto_Do(int N)
{
 int sum = 0;
 int num = 0;
begin_loop:
 sum += (num+1);
 num++;
 if(num < N) goto begin_loop; // Go up and repeat: loop!
 // Else fall-through, out of loop.
end_loop:
 return sum;
}

In the sumNviaGoto_Do() function, we find all the elements of the preceding looping
statements. There is the loop block beginning at the begin_loop: label. There is the loop
block ending at the end_loop: label, and, in this example, the body of the loop block is
executed exactly once before the loop condition is evaluated. This, then, is the goto
equivalent of a do … while() loop.

So, you might now be wondering what a goto-equivalent while() … loop might look
like. Here it is, in the sumNviaGoto_While() function of the gauss_goto.c program:

int sumNviaGoto_While(int N)
{
 int sum = 0;
 int num = 0;
begin_loop:
 if(!(num < N)) goto end_loop;

Exploring Loops and Iteration Chapter 7

[161]

 sum += (num+1);
 num++;
 goto begin_loop;
end_loop:
 return sum;
}

Notice how the loop condition had to be slightly modified. Also, notice when that loop
condition is true, we go to the label that is after the goto begin_loop statement. This is
the only way we get out of the loop, just as in the while() … statement.

Finally, we can implement a for() … loop with goto, as shown here in
the sumNviaGoto_For() function of the gauss_goto.c program:

int sumNviaGoto_For(int N)
{
 int sum = 0;
 int num = 0;

 int i = 0; // Initialize counter.
begin_loop:
 if(!(i < N)) goto end_loop; // Loop continuation condition.
 sum += (num+1);
 num++;
 i++; // Counter increment.
 goto begin_loop;
end_loop:
 return sum;
}

To do this, we had to add a local counter variable, i, initialize it to 0, test that its value was
not less than N, and, finally, increment it before we unconditionally branch to the top of our
loop. You should be able to see how each of these statements corresponds to those in the
for() … statement.

In assembler language—a nearly direct translation to machine language—there is no for()
… , while() … , or do … while() loops. There is only goto. These goto looping
constructs could very well be translated directly into either assembler language or directly
to machine language. But we are programming C, so the point of demonstrating these
constructs is to show the equivalence between the various looping mechanisms.

The main() function of the gauss_goto.c program is given as follows :

#include <stdio.h>
#include <stdbool.h>

Exploring Loops and Iteration Chapter 7

[162]

int sumNviaGoto_While(int N);
int sumNviaGoto_Do(int N);
int sumNviaGoto_For(int N);

int main(void)
{
 int n = 100;
 printf("The sum of 1..%d = %d (via do-like goto loop)\n" ,
 n , sumNviaGoto_Do(n));
 printf("The sum of 1..%d = %d (via while-like goto loop)\n" ,
 n , sumNviaGoto_While(n));
 printf("The sum of 1..%d = %d (via for-like goto loop)\n" ,
 n , sumNviaGoto_For(n));
 return 0;
}

Create the gauss_goto.c file, enter the main() function, and the three sum functions.
Compile the program with the cc gauss_goto.c -o gauss_goto command. Run the
program. You should see the following output:

In the preceding screenshot, you can see that each of the alternate three looping methods to
calculate the sum of 1...100 gives us the same result as we have seen before.

So, now, the question before us is: We can loop with goto, but should we?

The answer is quite resoundingly—No! We don't need to, at all. We use for()… ,
while()…, or do … while() instead!

These complex looping statements exist to make our code clearer as well as to obviate the
need for goto. Let the compiler generate the goto statement for us. So, for general-purpose
computing, goto should rarely be used, if ever. However, in certain high-performance
computing situations, goto may be necessary.

Remember, the overuse and/or improper use of goto is a way to perdition! Use
goto wisely.

Exploring Loops and Iteration Chapter 7

[163]

Further controlling loops with break and
continue
Rather than relying on goto to get out of sticky situations inside of deeply nested
statements, the creators of C provided two very controlled goto-like mechanisms. These are
break and continue.

break jumps out of and to the end of the enclosing statement block, whereas continue is
used for looping, which goes immediately to the next iteration of the looping statement,
skipping any statements that would otherwise be executed in the loop after the
continue mechanism.

We have previously encountered the use of break in the switch statement in the
preceding chapter, where break caused the execution to resume immediately after the
switch statement block. break can also be used to jump to the end of the
enclosing statement_body loop.

In the following isPrime() function, break is used to get out of a loop that determines if
the given number is divisible by the counter value; if so, the number is not prime.

The isPrime() function of the primes.c program can be seen in the following code block:

bool isPrime(int num) {
 if(num < 2) return false;
 if(num == 2) return true;

 bool isPrime = true; // Make initial assumption that num is prime.
 for(int i = 2 ; i < num ; i++) {
 if((num % i) == 0) { // We found a divisor of num;
 // num is not prime.
 isPrime = false;
 break; // No need to keep checking; leave the loop.
 }
 }
 return isPrime;
}

Here, we are demonstrating break in a rather simple example. In this case, you may recall,
we could also have simply used return false instead, but where's the fun in that?
Because break is not in a switch but is in a loop, break takes the execution out of the loop
to the very next statement after the closing loop } bracket.

Exploring Loops and Iteration Chapter 7

[164]

The continue statement only works within an enclosing statement_body. When
encountered, the execution jumps to immediately before the closing loop } bracket, thereby
commencing on the next continuation_expression loop and possible loop iteration
(only if the continuation evaluates to true).

Let's say we want to calculate a sum for all prime numbers between 1 and N as well as all
non-prime numbers in the same range. We can use the isPrime() function within a loop.
If the candidate number is not prime, do no more processing of this iteration and begin the
next one. Our function that adds only prime numbers would look like this sumPrimes()
function of the primes.c program:

int sumPrimes(int num) {
 int sum = 0;
 for(int i = 1 ; i < (num+1) ; i++) {
 if(!isPrime(i)) continue;

 printf("%d " , i);
 sum += i;
 }
 printf("\n");
 return sum;
}

Similarly, a function that adds only non-prime numbers would look like this
sumNonPrimes() function of the primes.c program:

int sumNonPrimes(int num) {
 int sum = 0;
 for(int i = 1 ; i < (num+1) ; i++) {
 if(isPrime(i)) continue;

 printf("%d " , i);
 sum += i;
 }
 printf("\n");
 return sum;
}

Care must be exercised when using the continue statement to ensure that the loop counter
update is performed and not bypassed with the continue statement. Such oversight would
result in an infinite loop.

Exploring Loops and Iteration Chapter 7

[165]

The main() function of primes.c, which illustrates break and continue, does three
things. First, it does a simple validation of our isPrime() function using a for()… loop.
Then, it calls sumPrimes() via a printf() function, and, finally, it calls sumNonPrimes()
again via a printf() function. If the program logic is correct, the sum of both prime and
non-prime numbers should be the same as our preceding summing functions; that is how
we will verify the correctness of the program. The main() function of
the primes.c program is given as follows:

#include <stdio.h>
#include <stdbool.h>

bool isPrime(int num);

int sumPrimes(int num);
int sumNonPrimes(int num);

int main(void) {
 for(int i = 1 ; i < 8 ; i++)
 printf("%d => %sprime\n", i , isPrime(i) ? "" : "not ");
 printf("\n");
 printf("Sum of prime numbers 1..100 = %d\n" ,
 sumPrimes(100));
 printf("Sum of non-prime numbers 1..100 = %d\n" ,
 sumNonPrimes(100));
 return 0;
}

Create and type in the primes.c program. Compile, run, and verify its results.

Create the primes.c file, enter the main() function, the isprime() function, and the two
sumPrime functions. Compile the program with the cc primes.c -o primes command.
Run the program. You should see the following output:

Exploring Loops and Iteration Chapter 7

[166]

In the preceding screenshot, you can see that for each function, we first validate that
the isPrime() function properly determines the primeness of one through seven. Not only
can you see the sum of prime numbers and non-prime numbers, but you can also see the
numbers in each set, for further verification. Note that 1060 + 3990 = 5050 is the expected
correct result.

For a complete comparison of break, continue, return, and goto, consider the following
code outline:

int aFunction(...) {
 ...
 for(...) { /* outer loop */
 for(...) { /* inner loop */
 ...
 if(...) break; /* Get out of inner loop. */
 ...
 if(...) continue; /* Next iteration of inner loop. */
 ...
 if(...) goto ERROR; /* Get out of ALL loops. */
 ...
 /* Next statement after continue; */
 /* Also next iteration of inner-loop. */
 }
 /* Next statement after break; still in outer-loop. */
 ...
 }
 return 0; /* normal function exit */

ERROR: /* Error recovery */
 ...
 return -1; /* abnormal function exit */
}

In this outline, there is an inner for() … loop nested within an outer for() … loop.
break will only go to the end of its immediate enclosing statement_body. In this case, it
goes to the end of the inner loop block and executes statements in the outer loop
block. continue goes to the point immediately before the end of the enclosing
statement_body to repeat the loop iteration. goto ERROR immediately jumps to the
ERROR: label at the end of the function body and handles the error condition before
returning from the function. In the statement before the ERROR: label, there is a return
0 that returns from the function, thus preventing the execution of the error recovery
statements.

Exploring Loops and Iteration Chapter 7

[167]

Understanding infinite loops
So far, we have considered loops that have an actual end. In most cases, this is both
intended and desirable. When loops never end, either unintentionally because we goofed
up somewhere or intentionally, they are called an infinite loop. There are a few special
cases where an infinite loop is actually intentional. The cases are as follows:

When the user interacts with the program until the user chooses to quit the
program
When there is input with no known end, as in networking where data can come
at any time
Operating system event loop processing. This begins upon boot-up and waits
(loops) for events to happen until the system is shut down.

When you start a program that accepts user input—keyboard strokes, mouse movements,
and so on, it goes into an infinite loop to process each input. We would then need to use a
break, goto, or return statement in the statement-body of our infinite loop to end it.

A simplified version using for()… might look something like the following:

void get_user_input(void)
{
 ...
 for(; ;)
 {
 ...
 if(...) goto exit;
 ...
 if(cmd == 'q' || cmd == 'Q') break;
 ...
 }

 exit:
 ... // Do exit stuff, like clean up, then end.
}

When continuation_expression is null, it is evaluated to true. The other parts of the
control expression are optional.

The computer's main routine, after it loads all of its program parts, might look something
like this:

void system_loop(void)
{
 ...

Exploring Loops and Iteration Chapter 7

[168]

 while(1)
 {
 ...
 getNextEvent();
 handleEvent();
 ...
 if(system_shutdown_event) goto shutdown;
 ...
 }
 shutdown:
 ... // Perform orderly shut-down activities, then power off.
}

This is an extremely oversimplified version of what actually goes on. However, it shows
that somewhere in your computer, an infinite loop is running and processing events.

Summary
We have encountered various repetitious looping techniques, from the ridiculous (brute-
force iteration) to the sublime (various loop statements with break, continue, and goto).
With functions, conditional expressions, and—now—looping statements, we conclude our
journey through C flow-of-control statements. Nearly all of these concepts can be easily
translated into other programming languages.

In the bulk of the remainder of the book, we'll broaden our understanding and ability to
manipulate data well beyond the simple forms we have so far encountered. In the next
chapter, we will explore custom named values called enumerations.

8
Creating and Using

Enumerations
The real world is complicated—far more complicated than just whole numbers, numbers
with fractions, Boolean values, and characters. In order to model it, C provides various
mechanisms for custom and complex data types. For the next eight chapters, we are going
to explore various ways that our intrinsic data types can be extended and combined to
more closely match the real world.

The first of these extensible data types is enumerated types. These are groups of values that
are related; but, we don't really care about their values—we differentiate each item in the
group by its name. The value corresponding to that name is irrelevant to us; the
significance lies in its unique name within the group of enumerated items to which it
belongs. In truth, however, a unique value for each item in the group can either be specified
by us or will be automatically assigned by the compiler. Our program can then choose
between them or can select from the group for specific operations. The switch statement is
particularly handy when dealing with enumerated items, also simply called
enumerations. The following topics will be covered in this chapter:

Understanding how enumerations limit values to a specified range
Declaring various enumerations
Writing a function to use the enumerations declared
Using the switch statement to select an enumeration to perform actions specific
to it

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

Creating and Using Enumerations Chapter 8

[170]

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Introducing enumerations
There are times when we want a program or function variable to take only a limited
number of values. For convenience, and to make the purpose of each value clear, each value
in the set of possible values is given a name. We can think of this set as a grouping of
related values.

Let's say we want a variable to represent the suits of a deck of cards. Naturally, we know
each suit by its name—spades, hearts, clubs, and diamonds. But C doesn't know about card
names or card suits. If we wanted to represent each of these suits with a value, we could
pick any value for each, say, 4 for spades, 3 for hearts, 2 for diamonds, and 1 for clubs. Our
program, using this simple scheme, might look as follows:

int card;
...
card = 3; // Heart.

But we would have to do the work of remembering which value corresponds to which suit.
This is an error-prone way of solving this problem.

We could, however, improve that solution by either using the preprocessor or by using
constants, as follows:

#define spade 4
#define heart 3
#define diamond 2
#define club 1

int card = heart;

Or, even better, we could do it by using constants for each value, as follows:

const int spade = 4;
const int heart = 3;
const int diamond = 2;
const int club = 1;

int card = heart;

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Creating and Using Enumerations Chapter 8

[171]

While each of these values accurately represents the four suits, they are unrelated. The
card variable could easily be assigned other values that are neither valid nor obvious in
terms of what they intend to represent. card could be assigned with a value that is not one
of the four, and therefore would make no sense.

C provides a way to group values by name so that their interrelationship is clear, and any
variable that is specified as having one of these values can only have one of these values and
no other.

Defining enumerations
The enumeration type allows us to specify a set, or group, of values a variable may have,
and only those values. Any assignment of a value outside of that range/group would be a
compiler error. The compiler catching such an error rather than it being caught at runtime
is preferred since it prevents unexpected program crashes.

The syntax for defining an enumerated type is as follows:

enum name { enumeration1, enumeration2, … , enumerationN };

The type consists of the two words, enum and name. The group of enumerated items is
contained within { and }. Each named item in the group of enumerated items is separated
by , and the definition is concluded with ;.

So, the definition of our enumerated type of suit would be as follows:

enum suit { spade , heart , diamond , club };

Or, we might want to make each item stand on its own, as follows:

enum suit {
 spade ,
 heart ,
 diamond ,
 club
 };

We have created a new data type—enum suit. We will see later, in Chapter 10, Creating
Custom Data Types with typedef, that with typedef, we can abbreviate this even further.

Any variable of type enum suit can take only one of those four possible values. The
convenience of this new type is that we no longer have to remember what each numerical
value means; the enumerated type tells us that.

Creating and Using Enumerations Chapter 8

[172]

When we define an enumerated type as we have done previously, the compiler
automatically assigns values to each enumerated item. We could, but don't have to, be
completely explicit. Also, we don't have to assign each enumerated item with a value that
we might want it to have, as follows:

enum suit {
 spade = 4, // assignments not needed.
 heart = 3,
 diamond = 2,
 club = 1
 };

In Chapter 5, Exploring Operators and Expressions, we briefly examined bitwise operators
using constants to declare single-bit flags. We can do this more clearly with enumeration.
However, when we use enumeration in this manner, we actually do care about the value of
each enumerated item. An enumerated definition for textStyles would be as follows:

/* flag name binary value */
enum textStyle {
 lowercase = 0x00000001,
 bold = 0x00000010,
 italic = 0x00000100,
 underline = 0x00001000
}

We set each item in the enumeration to be a specific bit for its value, or put another way, a
specific bit in its bit field. 0xooooooo1 is the binary value for 1. Knowing this, we could
have alternatively defined enum textStyle as follows:

/* flag name binary value */
enum textStyle {
 lowercase = 1,
 bold = 2,
 italic = 4,
 underline = 8,
}

You need to be careful when doing this, because the importance of the bit pattern may not
be obvious in the second example and an unsuspecting programmer may add an additional
item with a clashing bit pattern, such as the following:

 strikethrough = 5;

Creating and Using Enumerations Chapter 8

[173]

In our original intended scheme, the added item would be 4 (italic) + 1 (lowercase)
and might later give unpredictable results at runtime since tests for italic or lowercase
would evaluate to true if strikethrough was intended. To properly add
the strikethrough item, it should be defined as a power of 2 so as not to clash with the
other enumerated values, as follows:

enum textStyle {
 lowercase = 1,
 bold = 2,
 italic = 4,
 underline = 8,
 strikethrough = 16,
}

Using enumerations in this way is possible and sometimes necessary; more often, we only
regard the names of enumerated items. By carefully assigning values to each name, we can
then combine these textStyles in an integer variable and extract them, as follows:

int style = bold | italic; // Style has bold and italic
 // turned on.
int otherStyle = italic + underline; // OtherStyle has italic and
 // underline turned on.

if(style & bold) ... // bold is on
if(!(otherStyle & bold)) // bold is off

style is an integer that can be assigned enumerated values via bitwise operators or simple
arithmetic operators. We can't change the value of bold, italic, or any of the other
enumerated items; but, we can use their values to assign them to another variable. Those
variables' values can be combined and/or changed.

Using enumerations
We have defined a new type with a specified set of values. To assign values of that type to a
variable, we now have to define a variable using our new enumerated type.

Declaring a variable of type enum suit would be done as follows:

enum suit card;
...
card = spade;
...
if(card == club) ...
else if(card == diamond) ...

Creating and Using Enumerations Chapter 8

[174]

else if(card == heart) ...
else if(card == spade) ...
else
 printf("Unknown enumerated value\n");

Since card is an enumerated type, it cannot take any value other than those specified in the
type. To do so would cause a compiler error. You will notice in the preceding code snippet
that we check for any enumerated value outside of our known set of values. This is actually
not required for a simple card suit example; is there a deck of cards with more than 4 suits?
I think not. Is it likely then, that our set of enumerations would change? Also not likely.
Furthermore, card as an enumerated type cannot take any other value.

However, such a practice is recommended when the number of types could expand at some
later time. Such a simple check will ensure that the new values are properly handled (or
not), but the program behavior will not be unexpected, thereby avoiding a program crash.
Note that, while the possible values a variable can take are still limited, we need to consider
cases when our program code may not handle all the possible enumerated values.
Specifically, new enumerations may have been added, yet the code may not have been
updated to handle each one completely.

Imagine if, in the initial version of the program, the enum shape enumerated type was the
following:

enum shape { triangle, rectangle , circle };

Later, it may be found that enum shape needs to be extended to deal with more shapes, as
follows:

enum shape { triangle, square, rectangle, trapezoid, pentagon, hexagon,
octagon, circle);

All of the existing code that checks for triangle, square, and circle will work as before.
However, as we have added new enumerated values, we must also add code to handle
each one. It may not be obvious at all whether we remembered to change every place in our
program that uses these new types. The unknown type check is a fail-safe plan to help us
root out all instances where the handling of new enumerated items may have been missed.

As we saw at the end of the preceding chapter, if our program was large and involved
many files, we might even want to perform error processing and exit gracefully, as follows:

int shapeFunc(enum shape)
{
 ...
 if(shape == triangle) ...
 else if(shape == rectangle) ...

Creating and Using Enumerations Chapter 8

[175]

 else if(shape == circle) ...
 else
 goto error:
 }
 ...
 return 0; // Normal end.

error:
 ... // Error: unhandled enumerated type. Clean up, alert user,
exit.
 return -1; // Some error value.
}

In the preceding code snippet, we may have been pressed for time and have forgotten to
handle our new enumerated values—trapezoid, pentagon, hexagon, and octagon. Or as
more often happens, we may have failed to have updated code for just one or two of them.
By including a check as shown, while we may not completely eliminate unexpected
runtime behavior, we can limit the possible negative effects of not handling one of the
added enumerated values.

Indeed, we could even make our return type an enumerated type and let the caller handle
the error, as follows:

enum result_code
{
 noError = 0,
 unHandledEnumeration,
 ...
 unknownError
};

Here, noError is specifically assigned the value 0. Any subsequent items are automatically
assigned unique values for that enumerated group by the compiler. Then, our function
would become as follows:

enum result_code shapeFunc(enum shape) {
 ...
 if(shape == triangle) ...
 else if(shape == square) ...
 else if(shape == circle) ...
 else
 return unHandledEnumeration;
 }
 ...
 return noError;
}

Creating and Using Enumerations Chapter 8

[176]

The caller of this function should then do a check and handle result_code, as follows:

enum result_code result;
enum shape aShape;
...
result = shapeFunc(aShape);
if(noError != result)
{
 ... // An error condition occurred; do error processing.
}
...

A more concise version of the call and error check would be as follows:

if(noError != shapeFunc(aShape))
{
 ... // An error condition occurred; do error processing.
}

In the preceding if condition, as it is evaluated, a call is made to shapeFunc()
and enum_result is returned. The enumerated value, which cannot be changed since it is
specified elsewhere, is placed first. In this way, we can avoid the somewhat common error
of assigning a function result to one element of a conditional expression. Let's explore this a
bit further.

In the following snippet, the variable is given first:

if(result == noError) ... // continue.

This could be mistakenly written (or later altered) as follows:

if(result = noError) ... // continue.

In the latter case, noError is assigned to the result variable. Its value is actually 0 by
definition, which would then be interpreted as false. The code would behave as if an error
condition had occurred, when in fact, no error was encountered.

The preceding code illustrates a defensive coding tactic—in a conditional expression, strive
to put the invariant conditional first. In the preceding example, the value of noError
cannot be changed by definition, whereas result can. Therefore, it is safer to put noError
first in the conditional expression, to avoid any confusion between comparison, ==, and
assignment, =, operators.

Creating and Using Enumerations Chapter 8

[177]

A more concise version of the call and error check would be as follows:

if(noError != shapeFunc(aShape))
{
 ... // An error condition occurred; do error processing.
}

The returned function value is used immediately. This approach has some advantages and
disadvantages. While we avoid the use of the result variable, what if, in the error
processing code, we want to test for several error conditions and process each differently?
This concise method does not allow us to do that. We would have to reintroduce our
result variable and then use it to check for various values.

The next section will show how we can avoid this possibility even further with enumerated
types.

The switch()… statement revisited
The switch()… statement is ideally used when we have a single value that can be from a
specified set of values only. Doesn't that sound like an enumerated type? It should and,
happily, it does.

Using the switch statement to evaluate an enumerated type simplifies the intent of our
code and helps to prevent some troublesome situations. Here is the shapeFunc() function
revisited using the switch()… statement:

enum_result_code shapeFunc(enum shape aShape)
{
 ...
 switch(aShape)
 {
 case triangle:
 ...
 break;
 case rectangle:
 ...
 break;
 case circle:
 ...
 break;
 default:
 ... // Error: unhandled enumerated type. Clean up, alert user,
return.
 return unHandledEnumeration;

Creating and Using Enumerations Chapter 8

[178]

 break;
 }
 ...
 return noError; // Normal end.
}

By using the switch()… statement, it is clear we are considering only the value of shape.
Recall that using if()…else… is more general; other conditions may be introduced into
the processing, which would make the intent of processing the value of shape less
straightforward. The switch statement also allows us to remove the need for goto and
handle the unknown shape enumerated type in the default: branch of the switch
statement. Notice that, even though our default: branch has a return statement, we also
add the break statement as a matter of safety. As a rule, any default: branch should
always include a break statement because other case: branches may occur after
the default: branch.

Let's put this very function into a working program. In sides.c, we define an enumerated
list of shapes, and then call PrintShapeInfo() to tell us how many sides each shape has.
We'll also demonstrate fall-through logic in the switch statement.
The PrintShapeInfo() function is as follows:

void PrintShapeInfo(enum shape aShape)
{
 int nSides = 0;
 switch(aShape) {
 case triangle:
 nSides = 3;
 break;
 case square:
 case rectangle:
 case trapezoid:
 nSides = 4;
 break;
 case circle:
 printf("A circle has an infinite number of sides\n");
 return noError;
 break;
 default:
 printf("UNKNOWN SHAPE TYPE\n");
 break;
 }
 printf("A %s has %d sides\n" , getShapeName(aShape) , nSides);
}

Creating and Using Enumerations Chapter 8

[179]

The purpose of the function is to determine and print the number of sides of a given shape.
Notice that square, rectangle, and trapezoid all have four sides. When one of them is
encountered, the logic is the same—assign 4 to the number of sides. For a circle, no number
is possible to represent infinity; in that case, we simply print that and return from the
function. For all the other cases, we call another function, getShapeName(), to return the
name of the shape.

Notice that, in this switch statement, we have forgotten to handle some of our shapes. The
function handles this gracefully. We do not need to return a function result status because
we are simply printing out the name and number of sides of a given shape.

The getShapeName() function is as follows:

const char* GetShapeName(enum shape aShape) {
 const char * name;
 switch(aShape) {
 case triangle: name = nameTriangle; break;
 case square: name = nameSquare; break;
 case rectangle: name = nameRectangle; break;
 case trapezoid: name = nameTrapezoid; break;
 case pentagon: name = namePentagon; break;
 case hexagon: name = nameHexagon; break;
 case octagon: name = nameOctagon; break;
 case circle: name = nameCircle; break;
 default: name = nameUnknown; break;
 }
 return name;
}

This function takes a shape enumerated type and returns the name of that shape. Here, we
put each branch of the switch statement on a single line consisting of case:, an
assignment, and a break statement. But where do these names come from? We will explore
strings in Chapter 15, Working with Strings. For now, let's just take these as given. To use
them in our function, we must define them as global constants. We cannot define them in
the function itself because they will be destroyed in the function block when the function
returns. So, by the time the caller needs those values, they are gone! By making them global
constants, they exist for the life of the program and they do not change (they don't need to
change). We will explore this concept in greater detail in Chapter 25, Understanding Scope.
The shape names must be defined in our program as follows:

#include <stdio.h>

const char* nameTriangle = "triangle";
const char* nameSquare = "square";
const char* nameRectangle = "rectangle";

Creating and Using Enumerations Chapter 8

[180]

const char* nameTrapezoid = "trapezoid";
const char* namePentagon = "pentagon";
const char* nameHexagon = "hexagon";
const char* nameOctagon = "octagon";
const char* nameCircle = "circle";
const char* nameUnknown = "unknown";

enum shape { triangle, square, rectangle, trapezoid, pentagon, hexagon,
octagon, circle);

void PrintShapeInfo(enum shape aShape);
const char* GetShapeName(enum shape aShape);

int main(void) {
 PrintShapeInfo(triangle);
 PrintShapeInfo(square);
 PrintShapeInfo(rectangle);
 PrintShapeInfo(trapezoid);
 PrintShapeInfo(pentagon);
 PrintShapeInfo(hexagon);
 PrintShapeInfo(octagon);
 PrintShapeInfo(circle);
 return 0;
}

Unfortunately, in C, we cannot use an enumerated type to define string values. We define
them as constants because we do not want the names to change.

Create the shapes.c file, enter the main function and the two functions, and save your
program. Compile and run the program. You should see the following output:

Notice that there are three unknown shape types. Perhaps we forgot to handle them
somewhere in our program. Edit the program so that all the shape types are handled. You
can find the source code in the GitHub repository for shapes.c and the completed
version, shapes2.c, which handles all of the enumerated items.

Creating and Using Enumerations Chapter 8

[181]

Summary
An enumerated type is a set of named values. Most of the time, the values are not
significant, but items that are in the set itself add meaning to the type. We can use
enumerated types to create natural collections or groups of values, as we have seen with
card suits and shapes. The switch statement is ideally suited to select and process items
within an enumerated type.

An enumerated type, unfortunately, doesn't provide everything we might need to model
the real world. For instance, in a deck of cards, each card has both a suit and a face value,
two different enumerations. To combine them into a single card object that represents
reality more closely, we need another custom data type—structures. We will explore these
in the next chapter.

2
Section 2: Complex Data Types

The real world is complicated. In order to model it, C provides mechanisms for complex
data types. These mechanisms are structures, arrays, and combinations of structures and
arrays.

This section comprises the following chapters:

Chapter 9, Creating and Using Structures
Chapter 10, Creating Custom Data Types with typedef
Chapter 11, Working with Arrays
Chapter 12, Working with Multi-Dimensional Arrays
Chapter 13, Using Pointers
Chapter 14, Understand Arrays and Pointers
Chapter 15, Working with Strings
Chapter 16, Creating and Using More Complex Structures

9
Creating and Using Structures

When a number of values all pertain to a single thing, we can keep them organized with
structures. A structure is a user-defined type. There may be multiple values in a structure
and they may be of the same type or different types. A structure, then, is a collection of
information representing a complex object.

With structures, not only can we represent complex objects more realistically, but we can
also create functions that manipulate the structure in relevant ways. Just like data within a
structure is grouped together in a meaningful manner, we can also group functions that
manipulate the structure together in meaningful ways.

C is not an object-oriented programming (OOP) language. However, OOP has been a
primary focus of programming languages and programming since the early 1990s. It is
extremely likely that after you learn C, you will, at the very least, be exposed to object-
oriented programming concepts. Therefore, after we learn about C structures and the
operations we can use on them, we will learn how C structures are a logical transition to
OOP. Thinking about C in a special manner, then, becomes a stepping stone to learning
OOP.

The following topics will be covered in this chapter:

Understanding how to declare a structure
Understanding how to initialize the values of various structures
Writing functions to perform simple operations on a structure
Modifying a structure to include another sub-structure
Understanding how C structures and functions are similar to and different from
objects in other object-oriented programming languages

Let's get started!

Creating and Using Structures Chapter 9

[184]

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Understanding structures
It would be extremely easy for C programmers if the world were simply made up of objects
that were only numbers or names. Imagine if everyone were expressed as only a name or a
series of numbers but nothing else. An automobile Vehicle Identification Number (VIN)
precisely describes various attributes of that car and uniquely identifies it. On the other
hand, humans are far more complex than automobiles. Perhaps the world would be a very
uninteresting place.

For C programs to solve real-world problems, they have to be able to model real-world
complex objects. C allows various aspects of real-world objects to be abstracted and
modeled via C structures. In the previous chapter, in a very basic way, we explored two
such objects – playing cards and two-dimensional shapes. Did we explore every aspect of
them? No.

In fact, we barely scratched the surface. For playing cards, we need to be able to describe all
52 cards in a deck uniquely. To do this, we need both the card's suit and its face value. We
might also need the card's relative value (spades have a higher value than hearts, an ace
might have a high value or low value, and so on). Later, we will learn how to put them in a
collection so that we can represent a full deck of 52 cards. For now, we will see how to
accurately represent each card individually.

Likewise, with 2-dimensional shapes, we only represented a single, basic aspect of
them—the number of corners or sides that they have. Depending on the needs of the model
we need to manipulate, we may need to additionally consider the lengths of each side, the
angles of each corner, and other aspects of the shape, such as its surface area.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Creating and Using Structures Chapter 9

[185]

If we were drawing a shape in a field, we would need to be concerned about its x- and y-
positions, line thickness, line color, fill color, vertical ordering in relation to other shapes,
and possibly other aspects of the shape in the field. Our shape structure might also need to
contain other structures representing position and colors. A position would be a structure
of two values x and y representing the Cartesian coordinate (x,y). A color would be a
structure of four values representing red, green, blue, and transparency levels (this is just
one representation of color).

In Chapter 6, Exploring Conditional Program Flow, we considered the calculations for a leap
year. The year is just one small part of a structure representing a date. Actually, some of the
most complex structures are those that accurately represent date and time and then convert
between all of Earth's various calendars and time zones.

Lastly, when we consider a structure consisting of multiple aspects, we must also consider
the operations we can perform on that structure. This is similar to our basic data types and
the operations we perform on those data types. However, because structures are custom to
our specific program and problem domain, we must realize that we must also fashion the
necessary operations on those structures – how to set and get information within them;
how to compare one to another; and what other operations might be possible, such as
adding a duration to time or blending two colors. Later, when we have collections of
structures, we might want to order them, find a specific structure in a collection of
structures, and perform other operations on them.

Declaring structures
The structure type allows us to specify a group of related variables, each representing a
facet, or component, of the thing being modeled. There may be just a few components in
the modeled thing; more often than not, there are many components. Each component can
be of any intrinsic C data type (integer, real, Boolean, char, complex, and so on) or any
previously defined custom type. The components in a structure do not have to be of the
same type. Therein lies the power of the structure – it allows us to group various aspects of
the thing into a single custom data type; in this case, a C structure. We can then use that
data type much like we use any other data type.

The syntax for defining a structured type is as follows:

struct name {
 type componentName1;
 type componentName2;
 … ;
 type componentNameN;
};

Creating and Using Structures Chapter 9

[186]

The type consists of the two words, struct and name. The components of the structure are
contained within { and }. Each named component in the structure is separated by a ; and
the definition of the structure is concluded with ;. Unlike intrinsic data types, components
aren't initialized within a structure when it is defined. Initialization is done when a variable
of that structure type is declared.

So, the definition of our enumerated type of card would be as follows:

enum Suit {
 club = 1,
 diamond,
 heart,
 spade
};

enum Face {
 one = 1,
 two,
 three,
 four,
 five,
 six,
 seven,
 eight,
 nine,
 ten,
 jack,
 queen,
 king,
 ace
};

struct Card {
 enum Suit suit;
 int suitValue;
 enum Face face;
 int faceValue;
 bool isWild;
};

struct Card card;

Creating and Using Structures Chapter 9

[187]

Notice that we must define the enumerations of enum Suit and enum Face before using
them in our structure. Also, note that enum Suit and enum Face (custom types) are
similarly named but still different from the suit and face variables. Remember that
uppercase letters are different from lowercase letters in identifiers/variable names. We are
adopting an arbitrary convention here that custom data types begin with an uppercase
letter and variables of that type begin with a lowercase letter of the same name.

Our struct Card now has enough information to accurately reflect a playing card's suit
and face. We have added integer variables to hold the card's relative suit and face value.
We might have chosen to use the values contained within enum Suit and enum Face, but
that might cause issues later on, so we have a separate component for each. In some card
games, the ace is either high or low. In most card games, the suits have an ordered value,
with spades being the highest and clubs being the lowest. For instance, in the card game
Blackjack, suit value doesn't matter and aces are the highest value card, whereas in some
poker games, suit value does matter and the ace may be high or low. Our struct Card is
general enough that it can be used for each of these scenarios.

Finally, we declare a card variable of struct Card, again using the convention that the
custom data type name has an uppercase name while an instance of that type has a
lowercase name.

The card variable is the overall name for a variable of five components – suit,
suitValue, face, faceValue, and isWild. When the card variable is declared, enough
space must be allocated to hold all the values of the components within it. If we assume
that the enum types are 4 bytes and bool is 1 byte, then the result of sizeof(card)
would be 17. So, each time a variable of the struct Card type is declared, 17 bytes would
be allocated for it.

Note that, here, we assume that enum types are the same size as int and that a bool is 1
byte. The compiler actually determines the size of each enum type based on the range of
values it contains. Therefore, in reality, we cannot always rely on our assumptions. We can
verify this, of course, with the following code:

 printf(" enum Suit is %lu bytes\n" , sizeof(enum Suit));
 printf(" enum Face is %lu bytes\n" , sizeof(enum Face));
 printf(" int is %lu bytes\n" , sizeof(int));
 printf(" bool is %lu bytes\n" , sizeof(bool));

Creating and Using Structures Chapter 9

[188]

Note that we use the type as the parameter of sizeof(). To print the result of size(), we
need to specify %lu in print(). This will be thoroughly explained in Chapter 19, Exploring
Formatted Output. We could have also used any declared variable, as follows:

 printf("struct Card is %lu bytes\n" , sizeof(struct Card));
 printf(" card is %lu bytes\n" , sizeof(card));

Let's verify our assertions about the size of struct card with the following code:

// add necessary includes

// add definitions for enum Suit, enum Face, and struct Card

int main(void) {
 struct Card card;

 printf(" enum Suit is %lu bytes\n" , sizeof(enum Suit));
 printf(" enum Face is %lu bytes\n" , sizeof(enum Face));
 printf(" int is %lu bytes\n" , sizeof(int));
 printf(" bool is %lu bytes\n" , sizeof(bool));

 printf("struct Card is %lu bytes\n" , sizeof(struct Card));
 printf(" card is %lu bytes\n" , sizeof(card));

 return 0;
}

Create the card.c file and enter the preceding code, adding the necessary header file(s)
and enum and struct definitions. Save the file, compile it, and run it. You might see the
following output:

Creating and Using Structures Chapter 9

[189]

We calculated that struct Card would be 17 bytes, but our test program shows that it is
20 bytes. What's going on?

It turns out that something else is going on behind the scenes. That something is called
structure alignment, where a given structure is padded with enough space so that it
contains an even multiple of the size of its largest component. In the case of struct Card,
it is padded with 3 bytes so that it will occupy an even multiple of 4, with 4 bytes being the
largest size of any component in struct Card.

Let's try two different tests. First, add another bool variable to struct Card. Run the
program again. Notice that the structure takes the same number of bytes, 20. The 1-byte
bool reduced the amount of padding needed, but the structure is still 20 bytes. Now, add a
double variable to struct Card and run the program. Notice that the size of struct
Card is now 32, or an even multiple of eight, which is the size of a double.

Padding within a structure can occur at the end or even in between components. Holes may
appear between two consecutive components or after the last component. For the most
part, we don't need to and shouldn't concern ourselves with how padding occurs within a
structure.

However, because of the padding that's used to align structures, we cannot compare two
structures as whole entities for comparison. If padding is present in the structure, the
contents of that padding may be undefined, depending on how it is initialized. Therefore,
even if two structures have identical component values, the values in the padding are
highly unlikely to be equal.

Instead, if an equality test is required, a function must be written to compare two structures
component by component. We'll look at this in more detail later in the Performing operations
on structures – functions section.

Creating and Using Structures Chapter 9

[190]

Initializing structures and accessing structure
elements
Once a structure is defined, we can declare variables of that type. The variables of that
structure type must be initialized before use. C gives us a number of ways to do this,
depending on the needs of the situation.

Given the definition of struct Card, we can initialize a variable of that type in one of
three ways:

At the time of declaration: The first way of initializing a structure variable is at
declaration time, as follows:

struct Card c1 = { heart , (int) heart , king, (int)king , false };

The structure component values are enclosed between { and }, separated by
commas. The order is significant. c1 is a card of the heart suit with suitValue
of the heart enumeration and face of king with faceValue of the king
enumeration, which is not a wildcard. In this form of initialization, we must be
careful to get the order exactly correct within the definition of struct Card.

If we wanted a completely zero initial state, we could initialize all bytes in the
structure with the following code:

struct Card card3 = {0}; // Entire structure is zero-d.

Zeroing the structure in this manner can only be done at the same time the
variable is declared.

After declaration, the entire structure, in toto: The second way of initializing a
structure variable is by assigning it the values of another structure variable in
toto, or a complete and whole copy. This can be done as follows:

struct Card card2 = card1;

As card2 is being declared, every component of card1 is assigned to the
corresponding component of card2. Care must be taken that these structures are
of the same type, otherwise unpredictable results/assignments may occur. This is
because it is a bitwise assignment that assumes all of the components of each
structure are identically positioned (with padding) with the structure type.

Creating and Using Structures Chapter 9

[191]

After declaration, component by component: Lastly, a structure variable can be
assigned explicitly, component by component. When doing this, it is a good idea
to first nullify, or zero, the entire structure at its definition. Each component is
accessed using . notation, which specifies a given component of the structure.
This initialization would look as follows:

struct Card card3 = {0}; // Entire structure is zero-d.
card3.suit = spade;
card3.suitValue = (int) spade;
card3.face = ace;
card3.faceValue = (int)ace;
card3.isWile = true;

In this way, each component is accessed directly. The components do not have to
be assigned in the same order that they are defined in the structure, but it is a
good practice to do so. This type of initialization is done via component
initialization. While tedious, it is often the most error-free approach since the
structure can change; as long as the component names are the same, the code will
not fail. When using this approach, it is also a good idea to initialize to some
default state, which can either be all zeros or a default value.

You might need to create a default structure constant that is assigned to any structure
variable of that type when declared, as follows:

const struct Card defaultCard = { club , (int)club , two , (int)two , false
};

struct Card c4 = defaultCard;
c4.suit = ... /* some other suit */
...

Clearly, for our card example, having a defaultCard does not make sense. In other
scenarios, especially when the structure type is complex with many components, a default
structure constant can provide highly consistent program behavior since all structure
variables will begin in a known state of either zeroed values or otherwise valid values.

Performing operations on structures –
functions
Except for assignment, there are no intrinsic operations for structures. To perform any
operation on a single structure or with two structures, a function must be written to
perform the desired operation.

Creating and Using Structures Chapter 9

[192]

For example, earlier, we mentioned a function that can be used to compare two structures
for equality. This must be done component by component, as follows:

bool isEqual(struct Card c1 , struct Card c2) {
 if(c1.suit != c2.suit) return false;
 if(c1.face != c2.face) return false;
 return true;
}

Notice that we did not compare every component of struct Card in this function. We'd
only have to do that for absolute comparison and when we need to compare each and every
component of both structures. This just isn't necessary for our card example.

Does it make sense to perform any or all mathematic operations on two structures? In
general, no, but this answer is completely dependent on the nature of the structures we are
using.

For the card game Blackjack, we need to add up the face values of our hand. First, we'd have
to set up our faceValue with the proper values for Blackjack. Then, we need to create an
operation to add faceValue for two cards. We could do this in a couple of ways. The first
way would be to simply add the faceValue of each card, accessing that component
directly, as follows:

int handValue = card1.faceValue + card2.faceValue;
if(handValue > 21) {
 // you lose
} else {
 // decide if you want another card
}

Alternatively, we could write a function that adds two cards, as follows:

int sumCards(struct Card c1 , struct Card c2) {
 int faceValue = c1.faceFalue + c2.faceValue;
 return faceValue;
}

Then, we can get the sum of two cards with the following code:

int cardsValue = sumCards(card1 , card2);
if(cardsValue > 21) ...

Creating and Using Structures Chapter 9

[193]

Given these two approaches, is one preferred over the other? It really depends on a number
of factors. First, if we need to add the faceValue of cards in just one or possibly two places
in our program, the former approach is acceptable. If, however, we must add faceValue in
many places, it is better to consolidate that operation into a single function. Any changes or
enhancements that must be made to the operation can then be made in a single place – the
one function. All calls to that function would remain unchanged.

For example, what if aces could have either a high value – say, 14 – or a low value – say, 1.
If we used the former approach, we'd have to be certain our ace faceValue was properly
set before performing the addition. If the ace value could change or be either value,
depending on the situation, then we'd have to add code to take that into consideration in
every place that we added faceValues. In the latter approach, we would have to take the
ace's value into account in only one place: the add function.

Notice in the preceding function that the faceValue variable is different than both
c1.faceValue and c2.faceValue. You might think that these variable names conflict
because they have the same identifier name, but they don't. faceValue is a local variable to
the sumCards() function, while c1.faceValue is a component of c1 and c2.faceValue
is a component of c2. Each of them is actually a different location in memory capable of
holding different values.

Now, let's put these concepts into a simplified yet working program.

Copy the card.c file to card2.c. Add the isEqual() and sumCards() functions to it,
along with their function prototypes. Delete the body of main() and replace it with the
following:

int main(void) {
 struct Card card1 = { heart , (int) heart , king, (int)king , false };
 struct Card card2 = card1; // card 2 is now identical to card 1

 struct Card card3 = {0};
 card3.suit = spade;
 card3.suitValue = (int)spade;
 card3.face = ace;
 card3.faceValue = (int)ace;
 card3.isWild = true;

 bool cardsEqual = isEqual(card1 , card2);
 printf("card1 is%s equal to card2\n" , cardsEqual? "" : " not");

 cardsEqual = isEqual(card2 , card3);
 printf("card2 is%s equal to card3\n" , cardsEqual? "" : " not");

Creating and Using Structures Chapter 9

[194]

 printf("The combined faceValue of card2(%d) + card3(%d) is %d" ,
 card2.faceValue ,
 card3.faceValue ,
 sumCards(card2 , card3));
 return 0;
}

Save your work. Compile and run cards2.c. You should see the following output:

After initializing three cards with enum and int values, we then use the function we wrote
to compare two structures for equality. We also use the sumCards() function to add up the
face value of two cards. Note that while we can copy one structure to another with the =
operator, for any other types of comparisons or operations on structures, we need to create
and call our own functions.

So far, we have created a structure that is composed of intrinsic types (int), as well as
custom types (enum). We can also compose a structure out of other structures.

Structures of structures
A structure can contain components of any type, even other structures.

Let's say we want to represent a hand of five cards. We'll define a structure that contains
five struct Cards, as follows:

struct Hand {
 int cardsDealt;
 struct Card c1;
 struct Card c2;
 struct Card c3;
 struct Card c4;
 struct Card c5;
}

Creating and Using Structures Chapter 9

[195]

We could have just as easily written this as follows:

struct Hand {
 int cardsDealt;
 struct Card c1, c2, c3, c4, c5;
];

Both definitions are functionally identical. Do you see how this is similar to how variables
of the same type were declared in Chapter 4, Using Variables and Assignment? As you work
with C more and more, you will begin to see patterns being used repeatedly throughout the
language. These repeated patterns make the language concise, consistent (for the most
part), and easier to understand.

As we shall see in Chapter 16, Creating and Using More Complex Structures, there is a
somewhat more appropriate way to express our hand of cards; that is, by using a structure
that contains an array of cards.

In the struct Hand structure, we use a counter, cardsDealt, to store how many cards are
currently in our hand.

Given the structure definition we have seen, each component would be accessed as before:

struct Hand h = {0};

In the preceding code, struct Hand h is initialized to 0 for all its components and
subcomponents.

Then, we can access each of the card components directly, as follows:

h.c1.suit = spade;
h.c1.suitValue = (int) spade;
h.c1.face = two;
h.c1.faceValue = (int) two;
h.c1.isWild = false;
h.cardsDealt++;

The preceding code is equivalent to adding a card to our hand. Writing these lines out is
tedious. A common way to do this without things getting cumbersome is to use the
following code:

 struct Card c1 = { spade , (int)spade ,
 ten , (int)ten , false };
 struct Card c2 = { heart , (int)heart ,
 queen , (int)queen , false };
 struct Card c3 = { diamond , (int)diamond ,
 five , (int)ten , false };
 struct Card c4 = { club , (int)club ,

Creating and Using Structures Chapter 9

[196]

 ace , (int)ace , false };
 struct Card c5 = { heart , (int)heart ,
 jack , (int)jack , false };
 struct Card c6 = { club , (int)club ,
 two , (int)two , false };

While somewhat tedious, it is less tedious than the preceding method and enables us to see
the patterns of the values that have been assigned to each card.

Initializing structures with functions
Another way to initialize our hand is with a function. When given a card as an input
parameter to an addCard() function, we need to make sure we put it in the correct place in
our hand. The function is as follows:

struct Hand addCard(struct Hand oldHand , struct Card card) {
 struct Hand newHand = oldHand;
 switch(newHand.cardsDealt) {
 case 0:
 newHand.c1 = card; newHand.cardsDealt++; break;
 case 1:
 newHand.c2 = card; newHand.cardsDealt++; break;
 case 2:
 hewHand.c3 = card; newHand.cardsDealt++; break;
 case 3:
 hewHand.c4 = card; newHand.cardsDealt++; break;
 case 4:
 hewHand.c5 = card; newHand.cardsDealt++; break;
 default:
 // Hand is full, what to do now?
 // ERROR --> Ignore new card.
 newHand = oldHand;
 break;
 }
 return newHand;
}

Creating and Using Structures Chapter 9

[197]

In the preceding function, addCard(), oldHand, and card are inputs to the function.
Remember that variables, including structures, are passed by copy (a copy of them is
made). Therefore, we have to give the function our struct Hand in its current, or old,
state, add a card to it, and then return the updated or new version of it back to the caller,
again via a copy. The call to this function would, therefore, look as follows:

struct Card aCard;
struct Hand myHand;
...
aCard = getCard(...);
myHand = addCard(myHand , aCard);
...

We have not defined getCard() yet and will defer that until Chapter 16, Creating And
Using More Complex Structures.

In this function, rather than copy each struct Card subcomponent of hand, we simply
assign one struct Card in toto to the hand's appropriate card component.

Also in this function, we pass in a copy of our current hand, create a new hand based on the
current hand, modify it, and then return the modified version. This is not necessarily the
best way to perform this operation, but it is a common function pattern, that is, copy in the
structure, modify a copy of it in the function, and then overwrite the original with the
modified structure. In Chapter 13, Using Pointers, we will look at an alternate way of doing
this that avoids all of the structure copying.

Notice that, in the function, we have not considered what to do if the hand is already full.
Do we expect our function to handle it or perhaps handle it with another
function, discardCard(), before calling addCard()? The code snippet to do that would
look as follows:

...
card = getCard();
if(myHand.cardsDealt >= 5) { // should never be greater than 5
 myHand = discardCard(myHand, ...);
}
myHand = addCard(myHand, card);
...

To keep things simple, for now, we will assume that more than 5 cards is a programming
mistake and that our addCard() function handles the card presented to it by simply
ignoring it.

Creating and Using Structures Chapter 9

[198]

Printing a structure of structures – reusing
functions
Let's create a function to print the contents of the hand. This function will use a function
that we will create to print the structures it contains. In this way, the minimum amount of
code is used since printing an individual card exists in only one function. The following
function takes our struct Hand as an input parameter, determines which card we are
dealing with, and calls printCard() with that card as a parameter, as follows:

void printHand(struct Hand h) {
 for(int i = 1; i < h.cardsDealt+1 ; i++) { // 1..5
 struct Card c;
 switch(i) {
 case 1: c = h.c1; break;
 case 2: c = h.c2; break;
 case 3: c = h.c3; break;
 case 4: c = h.c4; break;
 case 5: c = h.c5; break;
 default: return; break;
 }
 printCard(c);
 }
}

In the preceding printHand() function, we iterate over the number of cards in our hand.
At each iteration, we figure out which card we are looking at and copy it to a temporary
variable so that all subsequent accesses are to the temporary structure variable. We can then
call printCard() for each card (shown in the following code), which deals with the face
and suit of the given card, even though it is a copy of a different card at each iteration.
Alternatively, we could have written a printHand() function, as follows:

void printHand2(struct Hand h) {
 int dealt = h.cardsDealt;
 if(d == 0) return;
 printCard(h.c1); if(dealt == 1) return;
 printCard(h.c2); if(dealt == 2) return;
 printCard(h.c3); if(dealt == 3) return;
 printCard(h.c4); if(dealt == 4) return;
 printCard(h.c5); return;
}

In the preceding function, we use fall-through logic to print the cards in our hand.

Creating and Using Structures Chapter 9

[199]

printHand() contains two switch statements to print an individual card – one to print
the face and one to print the suit, as follows:

void printCard(struct Card c) {
 switch(c.face) {
 case two: printf(" 2 "); break;
 case three: printf(" 3 "); break;
 case four: printf(" 4 "); break;
 case five: printf(" 5 "); break;
 case six: printf(" 6 "); break;
 case seven: printf(" 7 "); break;
 case eight: printf(" 8 "); break;
 case nine: printf(" 9 "); break;
 case ten: printf(" 10 "); break;
 case jack: printf(" Jack "); break;
 case queen: printf("Queen "); break;
 case king: printf(" King "); break;
 case ace: printf(" Ace "); break;
 default: printf(" ??? "); break;
 }
 switch(c.suit) {
 case spade: printf("of Spades\n"); break;
 case heart: printf("of Hearts\n"); break;
 case diamond: printf("of Diamonds\n"); break;
 case club: printf("of Clubs\n"); break;
 default: printf("of ???s\n"); break;
 }
}

Let's put these concepts into a simplified yet working program.

Copy card2.c to card3.c and remove the function prototypes and functions from
card3.c. Add the addCard(), printHand(), printHand2(), and printCard()
functions and their prototypes. Then, replace main() with the following code:

int main(void) {
 struct Hand h = {0};

 struct Card c1 = { spade , (int)spade ,
 ten , (int)ten , false };
 struct Card c2 = { heart , (int)heart ,
 queen , (int)queen , false };
 struct Card c3 = { diamond , (int)diamond ,
 five , (int)ten , false };
 struct Card c4 = { club , (int)club ,
 ace , (int)ace , false };
 struct Card c5 = { heart , (int)heart ,

Creating and Using Structures Chapter 9

[200]

 jack , (int)jack , false };
 struct Card c6 = { club , (int)club ,
 two , (int)two , false };

 h = addCard(h , c1);
 h = addCard(h , c2);
 h = addCard(h , c3);
 h = addCard(h , c4);
 h = addCard(h , c5);
 h = addCard(h , c6);
 printHand(h);
 printf("\n");
 printHand2(h);
 return 0;
}

Compile card3.c and run it. You should see the following output:

Here, you can see that both printHand() functions match our card initializations.

Lastly, we must mention that a structure may not contain a component that is its own type.
For example, a struct Hand may not contain a component of struct Hand. A structure
may contain a pointer reference to a component that is its own type. For example, take a
look at the following code:

struct Hand {
 int cardCount
 struct Hand myHand; /* NOT VALID */
};

Creating and Using Structures Chapter 9

[201]

This code is not valid because a structure cannot contain a component that is itself. Now,
take a look at the following code:

struct Hand {
 int cardCount;
 struct Hand * myHand; /* OK */
}

This is valid because the component is a pointer reference to the same type of structure. The
type of myHand is struct Hand *, which points to a different variable of the struct
Hand type. We will explore this feature in more detail in Chapter 13, Using Pointers.

The stepping stone to object-oriented
programming
OOP has been defined in many ways. At the core of all object-oriented languages are
objects. Objects are both collections of data, much like C structures, and also operations on
that data that's specific to that object, similar to C functions that operate on a structure. So,
an object contains both its data and the set of operations that can be performed on it.
Sometimes, the internals of the object are completely hidden to the outside program and its
components are only available through functions with access to them, called accessors. This
is a more self-contained version of C where functions are somewhat independent of the
data or structures they operate on and must be passed the data that they manipulate. In C, a
function, or a manipulator of data, is loosely tied, or coupled, to the data it manipulates.

In this chapter, we have used a set of data structures and enumerations to represent real-
world cards. We also made functions specific to that data, such as addCard(),
printCard(), printHand(), and so on, which are meant to manipulate those data
structures.

So, data structures and functions that manipulate them become the basis for object-oriented
programming. Data and operations being used on that data, when combined into a self-
contained cohesive unit, is called a class. A data object may be a derivative of a more
general classification of objects, much like a square is a derivative of the more general shape
classification. In this case, the square class derives certain general properties from the shape
class. Such a derivation is called inheritance and is also common to all object-oriented
programming languages. Methods, also called member functions, are functions that only
operate on the data contained within the class, also called member data.

Creating and Using Structures Chapter 9

[202]

Later, in Chapter 24, Working with Multi-File Programs, we will see that we can approximate
object-oriented thinking in C where a single file would contain a set of data structures and
constants, as well as a set of functions that are meaningful for those data structures. Such a
single C file data and functions approach would be a stepping stone to how you might
make the transition from C, a function-oriented programming language, to an object-
oriented programming language.

Summary
In this chapter, we learned about user-defined C structures. This is one of the most
powerful ways of representing real-world objects in a cohesive and clear manner. First, we
learned how to declare structures of our basic intrinsic types and custom types (enum).
Then, we explored how to directly access and manipulate the components of C structures.
The only simple operation that we can perform on structures in toto is the assignment
operator.

We also explored how to manipulate structures via functions that access structure
components and manipulate either the individual components, the entire structure, or
multiple structures at the same time. We then expanded on the concept of what can be in a
structure by defining structures of other structures. Finally, we learned that while C is not
an object-oriented language, we saw how C structures are the stepping stone to the
languages that are object-oriented.

You may have found that, while using enums and structs, having to remember to add
those keywords is somewhat cumbersome. In the next chapter, we will learn how to make
using enums and structs a bit less cumbersome with the typedef type specifier. This will
allow us to make the names of our data types more expressive, in a way similar to how we
make variable identifiers express their intended purpose.

10
Creating Custom Data Types

with typedef
As we saw in the last two chapters, C allows you to define your own types from
enumerations (enums) and structures (structs). C also allows you to redefine types for
convenience of naming and to provide clarity about how to use the redefined type. The
redefined type becomes a synonym for the original type. Being able to create a synonym of
one type from another is extremely useful to express the purpose of variables, not only
through their names but also through their redefined types. The benefits of this mechanism
are numerous.

The following topics will be covered in this chapter:

Creating custom named types from intrinsic types
Creating new synonyms from other custom named types
Simplifying the use of enums
Simplifying the use of structs
Exploring some important compiler options
Using header files for custom types and the typedef specifiers

Technical requirements
Continue to use the tools you chose from the Technical requirements section of Chapter
1, Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Creating Custom Data Types with typedef Chapter 10

[204]

Renaming intrinsic types with typedef
We have already looked at some of C's basic data types—whole numbers (integers), real
numbers (floating point and complex numbers), characters, enumerations, and Boolean
values. We called them intrinsic data types since they are built into the language and are
always available. By referring to these types specifically as data types, we give focus to the
content of variables of those types—containers of data that can be manipulated. However,
the use of the term data type is not strictly accurate. In reality, these types are classified in C
as arithmetic types. C has other types, some which we have encountered—function types,
structure types, and void types—and some of which we have not yet encountered—array
types, pointer types, and union types. We will explore array types and pointer types in
greater detail in later chapters.

For all of these types, C provides a way to rename them. This is for convenience only. The
underlying type that they are based on is unchanged. We use the typedef keyword to
create a synonym for the base type. In this way, we supply additional context about the
intent or purpose of a variable via a renamed type declaration. The syntax for using
typedef is as follows:

typedef aType aNewType;

Here, aType is an intrinsic or custom type and aNewType is now a synonym for aType.
Anywhere that aType is used after this declaration, aNewType can be used instead.

Remember, when enums and structs are defined, no memory is allocated. Likewise,
the typedef specifiers do not allocate any memory. Memory allocation does not happen
until we declare a variable of the new type, regardless if it is an enum type, a struct type, or
a type that has been defined via typedef.

Let's now see how and why this is useful.

Using synonyms
Up to this point, we have relied on the variable's name as the sole provider of the purpose,
which is our intended use of that variable. The name tells us (humans) what we expect that
variable to contain. The computer doesn't really care since a variable is just a location in
memory somewhere that holds some value of the given type.

Creating Custom Data Types with typedef Chapter 10

[205]

For instance, we might have three variables to hold measurement values—height, width,
and length. We could simply declare them as integers, as follows:

int height, width, length;

Their use as measurements is fairly obvious, but what are the intended units of
measurement? We cannot tell this from the int type. However, by using typedef, we can
add more useful context, as follows:

typedef int meters;

meters height, width, length;

height = 4;
width = height * 2;
length = 100;

meters has been defined as a synonym of the int type. Anywhere we use these, either as
standalone variables or as arguments to functions, they are now known as values of
meters and not simply as integers. We have added the context of units of measure via the
synonym. We can assign integers to them and we can perform integer operations on them.
If we assign real numbers to them, truncation will occur in the type conversion.

There is another benefit to using synonyms for types. That is when we may need to change
the underlying base type. When we declare variables using intrinsic or custom types, their
type is set to and constrained to that type. In the preceding example (before typedef), all
the variables are of the int type. What if, however, we needed to change their type either
to long long for a much larger range of whole numbers or to double to add greater
fractional accuracy? Without using typedef, we'd have to find every declaration of those
variables and functions that use them and change their type to the new type, which is
tedious and error-prone. With typedef, we would need to change only one line, as follows:

typedef double meters;

After making the change in the typedef specifier, any variable of the meters type has an
underlying type of double. Using typedef in this way allows us some flexibility to easily
modify our program.

Note that creating a synonym with typedef is only done as a matter of convenience. Doing
so doesn't limit operations on the newly defined type; any operations that are valid on the
underlying type are also valid on the synonym type.

Creating Custom Data Types with typedef Chapter 10

[206]

Nevertheless, this is extremely useful and very convenient. For instance, in some situations,
such as dealing with data to and from a network connection, is it not only useful but also
essential to have a clear understanding of the sizes of the various data types and variables
that are being used. One way to provide this clarity is through the use of typedef, as
follows:

typedef char byte; // 7-bits + 1 signed bit
typedef unsigned char ubyte; // 8-bits
typedef unsigned short ushort; // 16 bits
typedef unsigned long ulong; // 32 bits
typedef long long llong; // 63 bits + 1 signed bit
typedef unsigned long long ullong; // 64 bits

In a program that uses these redefined types, every time a variable of ubyte is declared, we
know that we are dealing with 1 byte (8 bits) and that any value is positive only (unsigned).
The ubyte synonym exactly matches the definition of the computer's byte unit, which is 8
bits. As an added benefit, ubyte uses far fewer keystrokes than unsigned char.

As stated earlier, anywhere where unsigned char would be used, ubyte can be used
instead. This applies to additional typedef specifiers, too. We can redeclare a synonym
type to be yet another synonym type, as follows:

typedef ubyte Month;
typedef ubyte Day;
typedef ulong Year;

struct Date {
 Month m;
 Day d;
 Year y;
};

In struct Date, each component is itself a typedef type based on ubyte (which is based
on unsigned char). We have created a new custom type based on a synonym we have
already created. In the preceding example, this makes sense because both Month and Day
will never exceed a value in the range provided by unsigned char (0..256). For most
practical purposes, Year could be represented as ushort, but here it is as ulong.

Use typedef when it makes the intended usage of the variables you declare clearer and
avoids ambiguity. You can also use it when you are uncertain about whether the chosen
type is the final, correct type. Furthermore, you may develop for yourself a standard set of
the typedef specifiers that you use frequently and consistently in the programs you write.
We will see, later in this chapter, that we can put them in a file so that they don't have to be
repeatedly edited in our programs.

Creating Custom Data Types with typedef Chapter 10

[207]

Simplifying the use of enum types
with typedef
Before we examine the use of typedef with enums, we must first complete the picture of
using enums. Remember that defining a new type does not require memory
allocation. Only when we declare variables of a given type is memory allocated to the
variables. In the last two chapters, we used enums by first defining them and then
separately declaring variables of that type, as follows:

 // First define some enumerated types.

enum Face { one , two , three , ... };
enum Suit { spade , heart, ... };

 // Then declare variables of those types.

enum Face f1 , f2;
enum Suit s1 , s2;

In the preceding code fragment, we have defined two types—enum Face and enum Suit.
Later, in separate statements, two variables of each type are declared—f1, f2, s1, and s2.

Another way to achieve the same result is to both define the enumerated type and to
declare variables of that type in one statement, as follows:

 // Defining an enumeration and declaring variables of
 // that type at same time.

enum Face { one , two , three , ... } f1, f2;
enum Suit { spade , heart , ... } s1 , s2;

In this code fragment, instead of four statements, we only have two. In each statement, a
type is defined and then variables of that type are declared. This second method is handy if
the enumerated type is only going to be used in a single function or within a single file.
Otherwise, its use is somewhat limited and the previous method of two-step definition and
declaration is preferred. We will see why when we put our custom type definitions in a
header file later in this chapter.

Creating Custom Data Types with typedef Chapter 10

[208]

The situation is quite different, however, when typedef is thrown into the mix. The syntax
for using typedef in enumerations has three forms. The first form is a two-part definition
where in the first part, the enumeration is defined and in the second part, the
typedef specifier creates a synonym for it, as follows:

enum name { enumeration1, enumeration2, … , enumerationN };
typedef enum name synonym_name;

enum name is our custom type. We use that type, just as we did with intrinsic types, to
create a new synonym. An example we have seen is as follows:

enum Face { one , two , three , ... };
enum Suit { spade, heart , ... };

typedef enum Face Face;
typedef enum Suit Suit;

We now have two custom types—enum Face and enum Suit—and convenient short-form
synonyms for them—Face and Suit. Anywhere that we need, say, to use enum Suit, we
can now simply use Suit.

The second form defines both the enumeration and synonyms for it in one statement, as
follows:

typedef enum name { enumeration1, enumeration2, … , enumerationN }
synonym1, synonym2, …;

The custom type is enum name, with one or more synonyms in the same
statement—synonym1, synonym2 , …. This is very different from what we saw earlier
when an enum and variables were declared in the same statement. In this case, there is no
allocation of memory and no variables are created. Using this form for Face and Suit
would work as follows:

typedef enum Face { one , two , three , ... } Face;
typedef enum Suit { spade , heart , ... } Suit;

In each of the two statements, a custom type is defined and a synonym for it is created.
While this is similar to the preceding statement where a custom type is defined and
variables of that type are allocated, here, typedef makes all the difference.

There is an even shorter form, where name is omitted and we only have the synonyms for
our unnamed or anonymous custom type. The following code snippet shows this:

typedef enum { one , two , three , ... } Face;
typedef enum { spade , heart , ... } Suit;

Creating Custom Data Types with typedef Chapter 10

[209]

We have created two anonymous enums that are now only known as a type by their
synonyms—Face and Suit. Regardless of which method we use to create synonyms for
enum Face and enum Suit, we can now declare variables using our new synonyms, as
follows:

Face face;
Suit suit;

We have declared two variables—face and suit—using a convention where the custom
type identifier has the first letter in its name in uppercase and the variables are all
lowercase identifiers.

Of the three ways given to create typedef enums, the last method is most common. Once
the synonyms for a custom type are defined, there is rarely a need to use the enum
name custom type; this, however, is not a strict rule and all three forms can be used
depending on what best fits the situation.

Simplifying the use of struct types
with typedef
All of the considerations we explored for enums equally apply to structs. We will go
through each of them as they apply to structs.

Before we examine the use of typedef with structs, we must first complete the picture of
using structs. In the last chapter, Chapter 9, Creating and Using Structures, we used
structs by first defining them and then separately declaring variables of that type,
as follows:

 // First define a structured type.

struct Card { Face face; Suit suit; ... };

 // Then declare variables of that type.

struct Card c1 , c2 , c3 , c4 , c5;

In the preceding code fragment, we have defined one type, struct Card. In a separate
statement, five variables of that type are declared—c1, c2, c3, c4, and c5.

Creating Custom Data Types with typedef Chapter 10

[210]

Another way to achieve the same result is to both define the structured type and declare
variables of that type in one statement, as follows:

// Defining an structure and declaring variables of that type
// at the same time

struct Card { Face face; Suit suit; ... } c1 , c2 , c3 , c4 , c5;

In this code fragment, instead of two statements, we have only one. In that statement, a
type is defined and then variables of that type are declared. This second method is handy if
the structured type is only going to be used in a single function or within a single file.
Otherwise, its use is somewhat limited and the previous method of two-step definition and
declaration is preferred. We will see why when we put our custom type definitions in a
header file later in this chapter.

The situation is quite different, however, when typedef is thrown into the mix. The syntax
for using typedef in structure definitions has three forms. The first form is a two-part
definition, where first the structure is defined and then the typedef specifier creates a
synonym for it, as follows:

struct name { type component1; type component2; … ; type componentN };
typedef struct name synonym_name;

struct name is our custom type. We use that type, just as we did with intrinsic types, to
create a new synonym. An example we have seen is as follows:

struct Card { Face face; Suit suit; ... };

typedef struct Card Card;

We now have one custom type, struct Card, and a convenient short-form synonym for
it, Card. Anywhere that we need, say, to use struct Card, we can now simply use Card.

The second form defines both the structure and synonyms for it in one statement, as
follows:

typedef struct name {
 type component1;
 type component2;
 … ;
 type componentN
} synonym1, synonym2, …;

Creating Custom Data Types with typedef Chapter 10

[211]

The custom type is struct name, with one or more synonyms in the same
statement—synonym1, synonym2 , …. This is very different from what we saw earlier
when a struct and variables were declared in the same statement. In this case, there is no
allocation of memory and no variables are created. Using this form for Card is as follows:

typedef struct Card { Face face; Suit suit; ... } Card;

In this statement, a custom type is defined and a synonym for it is created. While this is
similar to the preceding statement, where a custom type is defined and variables of that
type are allocated, here, typedef makes all the difference.

There is an even shorter form where name is omitted and we only have the synonyms for
our unnamed or anonymous custom type. The following code snippet shows this:

typedef struct { Face face; Suit suit; ... } Card;

We have created an anonymous struct that is now only known as a type by its
synonym, Card. Regardless of which method we use to create synonyms for struct Card,
we can now declare variables using our new synonyms, as follows:

Card c1 , c2 , c3, c4, c5;

We have declared five variables—c1, c2, c3, c4, and c5—using a convention where the
custom type identifier begins with an uppercase letter and the variables are all lowercase
identifiers.

Of the three ways given to create structs defined via typedef, the last method is the most
common. Once the synonyms for a custom type are defined, there is rarely a need to use
the struct name custom type; this, however, is not a strict rule, and all three forms can be
used depending on what best fits the situation.

Let's put all of this into use with a working program. Let's alter the card3.c program from
the last chapter, making use of our knowledge of typedef. We'll modify a copy of this
program to use enums (defined via typedef) and structs. Copy card3.c to card4.c and
make the following changes in card4.c:

Use typedef for the enums for Suit and Face.
Use typedef for the structs for Card and Hand.
In the structs that use enum Suit and enum Face, replace these with their
synonyms.

Creating Custom Data Types with typedef Chapter 10

[212]

Replace each occurrence of struct Card and struct Hand with their
synonyms wherever they are found (hint—with other structs, function
prototypes, function parameters, and so on).

Save, compile, and run card4.c. You should see the following output:

Finally, compare your edits on your local card4.c program to the card4.c program
provided in the source repository for this chapter. You should have eliminated all but
two enum keywords and all but two struct keywords in card4.c, and the output should be
identical to that of card3.c from the preceding chapter.

Other uses of typedef
We began this chapter by discussing C's various types beyond arithmetic types and custom
types. It should come as no surprise, then, that typedef can apply to more than just the
types we have explored in this chapter. typedef can be applied to the following types:

Arrays (explored in the next chapter, Chapter 11, Working with Arrays)
Pointer types (explored in Chapter 13, Using Pointers)
Functions
Pointers to functions

Creating Custom Data Types with typedef Chapter 10

[213]

We mention these here as a matter of completeness only. When we explore pointers, we
will touch on using typedef on variables of pointer types. However, the use of typedef
for the other types is somewhat advanced conceptually and beyond the scope of this book.

Some more useful compiler options
Up until now, we have been compiling our programs with just the -o output_file
option. Your compiler, whether gcc, clang, or icc, probably unbeknownst to you before
this point, has a bewildering array of options.

If you are curious, type cc -help into your command shell and see what spews out. Tread
lightly! If you do this, just understand that you will never need the vast majority of those
options. Some of these options are for the compiler only; others are passed on to the linker
only. They are there for both very specialized system software configurations and for the
compiler and linker writers.

If you are using a Unix or Unix-like system, try man cc in the command shell to see a more
reasonable list of options and their usage.

The most important of these options, and the one we will use from now on, is -std=c17 or
-std=c11. The -std switch tells the compiler which version of the C standard to use. Some
compilers default to older versions of the C standard, such as C89 or C99, for backward
compatibility. Nearly all compilers now support the newest standard, C17. On the rather
old system that I am using to write this, C17 is not supported. However, on another
updated system I have, -std=c17 is supported; on that system, I will use that switch.

Another very important compiler switch is-Wall. The -W switch allows you to enable an
individual warning or all warnings that the compiler encounters. Without that switch, the
compiler will not report the warnings.

It is also a very good idea to treat all warnings as errors with the -Werror switch. Any
warning conditions encountered by the compiler will then prevent further processing (the
linker will not be invoked) and no executable output file will be created.

Creating Custom Data Types with typedef Chapter 10

[214]

There are many reasons why using -Wall with -Werror is always the best practice. As
you encounter more C programs and more books about C, you will find that many rely on
and are steeped in older versions of C with slightly different behaviors. Some older
behaviors are good, while others are not as good. Newer compilers may or may not
continue to allow or support those behaviors; without -Wall and -Werror the compiler
might issue warnings when they are encountered. In a worst-case scenario, no error or
warning will be given but your program will behave in unexpected ways or will crash.
Another reason is that you may be using C in a way that is not quite according to
Hoyle—that is, not quite as it was intended to be used—and the compiler will provide
warnings when that happens. When you get a warning, it is then important to do the
following:

Understand why the warning was presented (what did you do to cause it?).1.
Fix and remove the cause of the warning.2.
Repeat until there are no errors or warnings.3.

Compilers are notorious for spewing cryptic warnings. Thankfully, we now have the
internet to help us out. When you get an error or warning you don't understand, copy it
from your command shell and paste it into the search field of your favorite web browser.

Given these considerations, our standard command line for compilation will be as follows:

cc source.c -std=c17 -Wall -Werror -o source

Here, source is the name of the C program to be compiled. Use c11 if your system does
not support c17 (or consider upgrading your compiler/system). You will get tired of typing
these switches. For now, I want you to do this manually.

Using a header file for custom types and the
typedef specifiers
Because we have explored custom types (enums, structs, and the typedef specifiers), it is
now appropriate to explore how to collect these custom types into our own header file and
include them in our program.

We have seen the following statements:

#include <stdio.h>
#include <stdbool.h>

Creating Custom Data Types with typedef Chapter 10

[215]

These are predefined header files that provide function prototypes—the typedef
specifiers, enums, and structs—related to those function prototypes. When a header file is
enclosed in < and >, the compiler looks in a predefined list of places for those files. It then
opens them and inserts them into the source file just as if they had been copied and pasted
into the source file.

We can now create our own header file, say card.h, and use it in our program. But where
do we put it? We could find the location of the predefined header files and save ours there.
That, however, is not a good idea since we may end up writing many, many programs;
editing, saving, and updating program files in many locations is tedious and error-prone.
Fortunately, there is a solution.

When we enclose a header file in " and ", the compiler first looks in the same directory as
the source .c file before it starts looking elsewhere for a given file. So, we would create and
save our card.h file in the same directory location as, say, card5.c. We would then direct
the compiler to use it as follows:

#include "card.h"

When you create header files for your programs, they will nearly always reside in the same
directory location as the source files. We can then rely on this simple convention of using "
and " to locate local header files. Local header files are those in the same directory as our
source file(s).

We must now consider what belongs in header files and what doesn't belong there.

As a general convention, each C source file has an associated header file. In that file are the
function prototypes and any custom types used within the source file that are specific to it.
We will explore this simplified use of a header file in this section. Basically, we put
anything in a header that does not allocate memory (variables) and does not define
functions. Anything that allocates memory or defines functions go into the source file itself.

To be clear, anything that could go into a header file doesn't have to go into a header file; as
we have already seen, it can be put into the source file where it is used. Whether to put
something in a header or not is a topic covered in Chapter 24, Working with Multi-File
Programs, and Chapter 25, Understanding Scope. Complications arise when we use a header
file in more than one place. For now, we will use a single header file for our single C source
file as a means to declutter the source file.

Creating Custom Data Types with typedef Chapter 10

[216]

Let's begin reworking card4.c into card.h and card5.c, which will use card.h but will
otherwise remain unchanged. Depending on the editor you are using, copying and pasting
between files may be easy or difficult. The approach we will take will avoid using the
editor's copy and paste abilities. Our approach is as follows:

Copy card4.c to card.h.1.
Copy card4.c to card5.c.2.
Then, pare down each of those two new files into what we want.3.

Open card.h and remove the #include statements, the main() function definition, and
any other function definitions. You should be left with the following:

typedef enum {
 club = 1 , diamond , heart , spade
} Suit;

typedef enum {
 one = 1, two, three, four, five, six, seven, eight, nine, ten, jack,
queen, king, ace
} Face;

typedef struct {
 Suit suit;
 int suitValue;
 Face face;
 int faceValue;
 bool isWild;
} Card;

typedef struct {
 int cardsDealt;
 Card c1, c2, c3, c4, c5;
} Hand;

Hand addCard(Hand oldHand , Card card);
void printHand(Hand h);
void printHand2(Hand h);
void printCard(Card c);

Now, open card5.c and delete the typedef enums, the typedef structs, and the function
prototypes. Replace them all with a single line, as follows:

#include "card.h"

Creating Custom Data Types with typedef Chapter 10

[217]

Your card5.c file should now look like the following:

#include <stdio.h>
#include <stdbool.h>
#include "card.h"

int main(void) {
 ...
 ...
}

// and all the rest of the function definitions.
...
...

What we have done is essentially split card4.c into two files—card.h and card5.c.
Compile card5.c (with our new switches) and run it. You should see the following output
(it should be the same as for card4.c):

Stop and consider this file organization—a source file with main() and function definitions
along with its header file containing enums, structs, the typedef specifiers, and function
prototypes. This is a core pattern of C source files. For now, this is a simple introduction to
creating and using our own header files. Henceforth, you'll see custom header files being
created and used. These will be simple header files and will typically consist of only a
single header that we create. We will explore more complex header files, as well as multiple
header files, in Chapter 24, Working with Multi-File Programs.

Creating Custom Data Types with typedef Chapter 10

[218]

Summary
We have seen how to create alternative names, or synonyms, for intrinsic types and custom
types declared with enums and structs. Using typedef, we have explored convenient ways
to create synonyms for intrinsic types and how the typedef specifiers simplify the use of
enums and structs. We have also seen how synonyms make your code clearer and provide
added context for the intended use of variables of that synonym type.

We have seen how it is somewhat cumbersome to declare and manipulate multiple
instances of structured data of the same type, especially when there are many instances of a
single structure type, such as a deck of cards.

In the next chapter, we will see how to group, access, and manipulate collections of data
types that are identical in type but differ only in values. These are called arrays. Arrays help
us to further model and manipulate, for instance, a deck of cards consisting of 52 cards.

11
Working with Arrays

We have already seen how a structure is a grouping of one or more components that
can each be of different data types. Often, we need a grouping that consists of the same
type; this is called an array. An array is a collection of multiple occurrences of the same data
type grouped together under a single name. Each element of the array is accessed via its
basename and an offset of that base. Arrays have many uses, from organizing homogenous
data types to providing the basis for strings, or arrays of characters.

Before we can learn about some of the wide uses of arrays, we need to explore the basics of
declaring and manipulating arrays.

The following topics will be covered in this chapter:

Declaring an array of values
Initializing an array in several ways
Accessing each element of an array
Understanding zero-based array indexing
Assigning and manipulating elements of an array
Using looping statements to access all elements of an array
Using array references as function parameters

Technical requirements
Continue to use the tools chosen from the Technical requirements section of Chapter 1,
Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Working with Arrays Chapter 11

[220]

Declaring and initializing arrays
An array is a collection of two or more values, all of which have the same type and share a
single common basename. It makes no sense to have an array of just one value; that would
simply be a variable. An array definition has the following syntax:

dataType arrayIdentifier[numberOfElements];

Here, dataType is any intrinsic or custom type, arrayIdentifier is the basename of the
array, and numberOfElements specifies how many values of dataType are in the array.
numberOfElements, for whatever type and values are given, will be converted into an
integer. All the elements of the array are contiguous (or side-by-side) so that the size of the
array is the size of each element multiplied by the number of elements in the array.

To declare an integer array of 10 elements, we would use the following statement:

int anArray[10];

anArray is the basename of our array of 10 integers. This declaration creates 10 variables,
each accessed via a single name, anArray, and an offset in the range of 0..9.

We could also declare the size of the array using a variable, a constant variable, or an
expression. In the following code sample, we use a constant, as follows:

const int kArraySize = 10;
int anotherArray[kArraySize];

kArraySize is an integer whose value does not change. Here, we use a convention where
constant values have k- as their prefix. This is convenient because we can use kArraySize
later when we want to access all the elements of the array. Had we used a variable whose
value could later change, we must understand that even if that value changes, the size of
the array does not. The array size is fixed at the time of its definition; the array size cannot
be changed after the array is defined.

Let's say we wanted to keep track of the air pressure and tread depth for the wheels of
various vehicles. If we had a function, getNumberOfWheels(enum VehicleKind), that
returned an integer, we might want to declare our arrays for each of the wheels of a given
vehicle using that function, as follows:

double tireTread[getNumberOfWheels(tricycle)];
double tirePressure[getNumberOfWheels(tricycle)];

Working with Arrays Chapter 11

[221]

getNumberOfWheels(tricycle) would return 3. So, we would have declared two
arrays of three double elements—one to hold values for each wheel's tireTread property
and another to hold values for each wheel's tirePressure property. If, on the other hand,
we needed to do this for an automobile, our use of the function to declare the arrays might
look as follows:

double tireTread[getNumberOfWheels(automobile)];
double tirePressure[getNumberOfWheels(automobile)];

In the preceding code fragment, getNumberOfWheels(automobile) would return 4.
So, we would have declared two arrays of four double elements—one to hold values for
each wheel's tireTread property and another to hold values for each
wheel's tirePressure property.

Note that just as we cannot redefine the same name of a variable in the same function, we
cannot use the same array names in the same function, even though they are of different
sizes. The preceding declarations would have to occur in different places in our program or
would have to have different names if they were in the same function.

Initializing arrays
As with all variables, it is important to initialize array elements to some known value before
using them. Just as with structures, as we saw in Chapter 9, Creating and Using Structures,
we can initialize an array in several different ways.

The most basic way to initialize an array is to set all of its values to the same value at the
time of definition. We set all the array elements to the same value as follows:

int anArray[10] = {0};
double wheelTread[getNumberOfWheels(tricycle)] = { 1.5 };

All the values of each array are set to the same value given within { and }. All 10 values of
anArray are set to 0. All three values of wheelTread are set to 1.5. However, we could
have set them all to a constant value, a variable, or the result of an expression. We can
change the value of each element as needed later.

To set each element to different values during initialization, each element's value can be
specified between { and }, separated by commas, as follows:

int anArray[10] = { 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 };

Working with Arrays Chapter 11

[222]

anArray has set each element to an even number. It would be difficult to do the same with
the wheelTread array because of the way it is defined. We might have too many or too few
values, depending on the result of getNumberOfWheels(). A mismatch between the
number of the elements dynamically assigned and the explicit array size would result in a
compiler error.

However, dynamically assigning an array size is possible if we don't first specify the
number of elements. However, once the size is set in this manner, it cannot be changed. We
can do this and let the number of given values determine the size of the array, as follows:

float lengthArray[] = { 1.0 , 2.0 , 3.0 , 4.0 , 3.0 , 2.0 , 1.0 };

In this definition, lengthArray contains seven floating-point values. Each of these values
can later change, but the size of lengthArray will now always be seven values of
the float type. We will see, in Chapter 15, Working with Strings, how this feature is
essential to defining arrays of characters (strings).

We can then determine the size of the array (if we know its type) with the following
program:

#include <stdio.h>

int main(void)
{
 int anArray[10] = {0}; // Initialize the whole thing to 0.
 int typeSize = sizeof(int);
 int arraySize = sizeof(anArray);
 int elementNum = arraySize / typeSize;

 printf(" sizeof(int) = %2d bytes\n" , typeSize);
 printf(" sizeof(anArray) = %2d bytes\n" , arraySize);
 printf(" anArray[] has %d elements\n\n" , elementNum);

 // Dynamically allocate array size via initialization.

 float lengthArray[] = { 1.0 , 2.0 , 3.0 , 4.0 , 3.0 , 2.0 , 1.0 };

 int floatSize = sizeof(float);
 int arraySize = sizeof(lengthArray);
 int elementNum = arraySize / typeSize;

 printf(" sizeof(int) = %d bytes\n" , floatSize);
 printf(" sizeof(anArray) = %d bytes\n" , arraySize);
 printf("anArray has %d elements\n" , elementNum);
}

Working with Arrays Chapter 11

[223]

With your editor, create an array1.c file and type in the preceding program. Compile it
using the compiler options from the previous chapter and run it. You should see the
following output:

anArray has a known size that was specified at its definition initialized to 0. lengthArray
has a dynamic size specified by the number of values given at its definition/initialization.
By using sizeof() at runtime, the actual size of an array can be determined when the
program runs.

There is another way to initialize an array—element by element. Before we can do this, we
must understand how to access each element. We will do this in the next section and in
the Operations on arrays with loops section when we use a loop to access all elements of an
array.

Accessing array elements
Each element of an array is accessed via its basename and an index into the array. An index
is also known as a subscript. Each element is accessed using the following form:

arrayName[index]

Here, index is a value between 0 and the array size minus 1. We can access any element of
an array using this form. Just as with declaring an array, the index may be a literal value, a
variable, the result of a function call, or the result of an expression, as follows:

float anArray[10] = {2.0};
int counter = 9;
float aFloat = 0.0;

aFloat = anArray[9]; // Access last element.

Working with Arrays Chapter 11

[224]

aFloat = anArray[counter]; // Access last element via value
 // of counter.
aFloat = anArray[exp(3 , 2)]; // Access element at result of
 // function.
aFloat = anArray[(sizeof(anArray)/sizeof(float) - 1]; // Access
 // last element via expression.

Each of these statements accesses the last element of the array and assigns the value of that
element to the aFloat variable. Notice how the index is evaluated in several ways using a
literal, a variable, a function result, and an expression. All of them evaluate to 9, the index
of the last element of the array.

Now, it may seem odd that even though we declared an array of 10 elements, the index of
the last element is not 10, but 9. To fully understand array indexing, it is critical to
understand that the index is really an offset of the basename. We will henceforth use the
term array offset whenever an index is intended. The first element of an array, therefore,
has an offset of 0.

For example, we can declare an array of 4 integers, as follows:

int arr[4] = {0}; // 4 elements

Then, we can initialize each element of this array element by element, as follows:

arr[0] = 1; // 0th offset, 1st element
arr[1] = 2; // 1st offset, 2nd element
arr[2] = 3; // 2nd offset, 3rd element
arr[3] = 4; // 3rd offset, 4th element (last one)

arr[4] = 5; // ERROR! there is no 5th element.

First, we can see how we can initialize an array element by element. For an array whose
size is 4 elements, the valid range of offsets is 0 .. 3. This is called zero-based indexing,
where the first element's index is 0. It is also sometimes referred to as the off-by-
one problem, and it requires careful consideration since it can be a great source of
programmer frustration. We originally encountered this in Chapter 7, Exploring Loops and
Iteration, when examining the for() … loop. It is not actually a problem; some
programmers might even consider it an intended design feature of C. It is really only a
problem when we misunderstand it.

However, when we instead think of the index as an offset—the first element has no offset or
a 0 offset—confusion is dispelled, and therein lies the difference. We will see in a bit how
this off-by-one problem can actually work to our advantage when we loop through the
whole array.

Working with Arrays Chapter 11

[225]

Note that it is up to the programmer to ensure that the array index is properly within the
range of the array's dimension. The compiler may provide a warning if an array index is
out of bounds, but it doesn't always do so.

Let's see when we can rely on the compiler and when we cannot with an example program.
Copy array1.c into array2.c, delete main(), and then replace it with the following:

int main(void) {
 int anArray[10] = {0}; // Initialize the whole thing to 0.
 int x, y , z;
 x = 11;
 y = 12;
 z = 13;

 anArray[11] = 7; // Compiler error!
 anArray[x] = 0; // No compiler error, but runtime error!
}

Compile array2.c and run array2. You should see something like the following output:

The compiler sees that anArray[11] is out of array bounds and generates an error. Now,
comment out the second-to-last line (anArray[11]...). Again, compile and run array2.
You should see something like the following output:

Here, anArray[x] does not cause a compiler error but does cause a runtime error, which is
displayed as Abort trap 6. The compiler cannot tell that the value of x holds a value that
is out of bounds for the array at compile time. At runtime, however, an abort trap is
generated.

This demonstrates that the compiler does not always detect array out-of-bounds errors.
Therefore, we cannot rely on the compiler to always do so.

Working with Arrays Chapter 11

[226]

Assigning values to array elements
Once you can identify an element of an array, you can retrieve values from it or assign
values to it just as you would with any other variable.

To change the value of an array element, we can similarly use the following access forms to
assign a value to it:

float anArray[10] = {0.0};
int counter = 9;
float aFloat = 2.5;

anArray[9] = aFloat;
anArray[counter] = getQuarterOf(10.0);
anArray[pow(3 , 2)] = 5.0 / 2.0;
anArray[(sizeof(anArray)/sizeof(float) - 1] = 2.5;

Each of these array-assignment statements assigns a value (evaluated in various ways) to
the last array element, whose index is evaluated in various ways. In each case, the index is
evaluated to 9, the index of the last element of the array. The pow() function raises the
first parameter to the power of the second parameter, which in this case is 32, or 9. In each
case, the value assigned to that array element is 2.5.

To summarize, each element of an array is a variable that we can get values from or assign
values to via the array's name and its index.

Operating on arrays with loops
When an array is present, a common operation is to iterate over all of its elements. For this,
we typically use the for()… loop. We could also use any of the other looping statements
described in Chapter 7, Exploring Loops and Iteration. However, because, more often than
not, we know the loop's size, it is easier and more reliable to use a counter-controlled
for()… loop. When we explore arrays of characters (or strings) in Chapter 15, Working
with Strings, we will begin our exploration of sentinel controlled-loops.

Working with Arrays Chapter 11

[227]

To iterate over the array, the index counter is initialized to 0 (to match the zeroth offset), the
continuation expression specifies that the index counter remains less than the number of
elements, and the index counter is incremented at each iteration. The loop is as follows:

const int kArraySize = 25;
int anArray[kArraySize];

for(int i=0 ; i < kArraySize ; i++) { // i: 0..24 (kArraySize-1)
 anArray[i] = i;
}

anArray has 25 elements. The offsets range for each element in anArray goes from 0 to 24.
In the loop statement, each element of the array is initialized to the value of its own offset.
Notice that we've made a note about the expected range of the value of the index counter, i,
in that line's comment. For historical reasons that predate C and have more to do with
another, older language, FORTRAN (now referred to as Fortran), the variable names—i, j,
and k—are typically used as index counter variables. So, we often see these used as a
common index-counting convention in C.

Notice that the continuation expression, i < kArraySize, is rather concise. Here, the zero-
based indices work together with the single less-than operator (<) to enable such
compactness. There are other ways that this loop could have been expressed, but none are
as compact as this. It is a common C idiom that had valid design rationale when Central
Processor Units (CPUs) were slower and simpler; this rationale is seldom valid today. Yet,
it lives on. Indeed, this idiom characterizes the innate terseness of C.

Using functions that operate on arrays
An array is a collection of variables bound together by a common name and an offset. In
nearly every respect, we can treat an individual element of an array just as we would any
other variable. Even with function parameters, array elements can be passed into them as
with regular variables, as follows:

#include <math.h>
int anArray[10] = {0};

anArray[3] = 5;
anArray[3] = pow(anArray[3] , 2);

Working with Arrays Chapter 11

[228]

The fourth element of the array is assigned a value of 5. The function declared in math.h,
pow(), is called with the value found in the fourth element of the array and is raised to the
power of 2 (squared) and assigned back to the fourth element of the array, which now has a
value of 25.

We want to create functions that operate on all elements of an array, regardless of their size.
But how do we use arrays of unknown sizes as parameters to functions? We can do this;
arrays of unknown sizes can be passed as arguments to functions. To pass an array of
unknown size as a function parameter, we must declare that the function parameter is an
array, as follows:

int findMin(int size, int anArray[]);
int findMax(int size, int anArray[]);

double findMean(int size , int anArray[]);
double findStdDev(int size , int anArray[]);

C does not store the size of an array. We, as programmers, must keep track of that in order
to ensure that we do not access memory beyond the bounds of the array. So, for the
function declared previously, we pass the size of the array we are going to provide as one
of the parameters. By doing this, the function can operate on a valid array of any size. Next,
we provide the type of each element—in this case, int—with the array name—in this
case, anArray—and [] to indicate that the anArray identifier is actually an array. The size
of the array is not relevant.

We have also provided two other function declarations previously that we will soon
explore. In all of these declarations, an array is passed in whose size is unknown, except by
the passed-in size value.

Now, it might be assumed that C will copy the entire array into the called function as it
does with other variables; however, it does not. Since that is not the case, arrays as
parameters might appear to violate the rules of passing function parameters by copy, but
they do not. How this mechanism works will become clear in Chapter 14, Understanding
Arrays and Pointers. For now, we will take as given the fact that the array name is a named
reference to a memory location and that the named reference is being copied into the
function. Again, we will see, in Chapter 14, Understanding Arrays and Pointers, how the
array name (a named reference to a memory location) and an offset from that location can
become an individual array element. We would define the two functions given previously
as follows:

int findMin(int size , int a[]) {
 int min = a[0];
 for(int i = 0 ; i < size ; i++)
 if(a[i] < min) min = a[i];

Working with Arrays Chapter 11

[229]

 return min;
}

int findMax(int size , int a[]) {
 int max = a[0];
 for(int i = 0 ; i < size ; i++)
 if(a[i] > max) max = a[i];
 return max;
}

In both functions, we set the min or max parameters to be the value of the first element (the
zeroth offset element) and then compare every subsequent value to min or max. When a
newly encountered value is greater than or less than the current min or max values, we
update min or max. You might look at this and see that we are comparing a[0] to min or
max, which has already been set to a[0], and think "that's redundant." It is, but it also only
requires an extremely small cost of computation. If you choose, you could modify these
properties to start the loop from the first offset instead of the zeroth offset.

Finding the minimum and maximum values for an array is sometimes useful. So, too, is
finding the mean and standard deviation for a set of values. Mean is the average value and
is computed by finding the sum of all values and dividing it by the number of values. A
loop that iterates over the array is indicated. The standard deviation is a value that shows
how far from the mean the overall set of numbers is. A set with a small standard deviation
has values that are mostly the same. A set with a large standard deviation has values that
are all over the place. We would define those two functions as follows:

double findMean(int size , int a[])
{
 double sum = 0.0;
 for(int i = 0 ; i < size ; i++)
 sum += a[i];
 double mean = sum / size;
 return mean;
}

double findStdDev(int size , int a[])
{
 // Compute variance.
 double mean = findMean(size , a);
 double sum = 0.0;
 double variance = 0.0;
 for(int i = 0; i < size ; i++)
 sum += pow((a[i] - mean) , 2);
 variance = sum / size;
 // Compute standard deviation from variance.
 double stdDev = sqrt(variance);

Working with Arrays Chapter 11

[230]

 return stdDev;
}

There are a few things to take note of in findMean() and findStdDev(). First, notice that
variables are declared as they are needed and are not necessarily all declared at the
beginning of the function block. Second, notice that the pow() and sqrt() functions are
math functions declared in math.h and are available in the C standard runtime library. We
will have to use #include <math.h> to be able to compile our program. Lastly, recall that
the names of function parameters in function declarations are optional. The names of
parameters that are actually used are found in the parameter list of the function definition.

To use these functions, create an array3.h file and add the function declarations there.
Then, create an array3.c file and add the following main() portion of the program:

// build with:
// cc array3.c -o array3 -lm -Wall -Werror -std=c11

#include <stdio.h>
#include <math.h>
#include "array3.h"
int main(void)
{
 int array1[] = { 3 , 4 , 6 , 8, 13 , 17 , 18 , 19 };
 int array2[] = { 34 , 88 , 32 , 12 , 10 };

 int size = sizeof(array1) / sizeof(int);
 printf("array1: range, mean, & standard deviation\n");
 printf(" range = [%d..%d]\n" ,
 findMin(size , array1) ,
 findMax(size , array1));
 printf(" mean = %g\n" , findMean(size , array1));
 printf(" std dev = %g\n\n", findStdDev(size , array1));

 size = sizeof(array2) / sizeof(int);
 printf("array2: range, mean, & standard deviation\n");
 printf(" range = [%d..%d]\n" ,
 findMin(size , array2) ,
 findMax(size , array2));
 printf(" mean = %g\n" , findMean(size , array2));
 printf(" std dev = %g\n\n", findStdDev(size , array2));
}

Working with Arrays Chapter 11

[231]

In this program, two arrays—array1 and array2—are dynamically defined and
initialized. Notice that when the functions that expect an array argument are
called, only the array name is given. The details of the array are provided in the function
prototype. Then, information about each of them is calculated and printed. Compile and
run this program. You should see the following output:

In one case, we calculated the range, mean, and standard deviation of an integer array with
eight dynamically assigned elements, and in another, we did the same calculations for a
dynamically assigned integer array of five elements.

Summary
In this chapter, we learned how arrays are homogenous groupings of data types, unlike
structures. We then learned how to declare arrays, as well as how to initialize them in
various ways depending on how they were declared. We saw that we don't always have to
specify the size of an array if we initialize it with values when it is declared. Once arrays
have been declared, their size cannot change. We learned how to access array elements via
the element's offset, also known as the index or subscript. We further saw how to
manipulate the simplest kind of array—a one-dimensional array—directly via the for()…
loop, as well as by using arrays as function parameters.

This chapter is a prerequisite to Chapter 12, Working with Multi-Dimensional Arrays,
through Chapter 16, Creating and Using More Complex Structures, where various aspects of
arrays will be explored with greater complexity. In Chapter 12, Working with Multi-
Dimensional Arrays, we will examine how to declare, initialize, and manipulate arrays of
two, three, and more dimensions. Chapter 13, Using Pointers, while not directly about
arrays, is essential to understanding the relationship between arrays and pointers, which
are explored in Chapter 14, Understanding Arrays and Pointers, which becomes the basis for
Chapter 15, Working with Strings. In Chapter 16, Creating and Using More Complex
Structures, we will complete our exploration of arrays with various kinds of arrays of
structures and structures containing arrays.

12
Working with Multi-Dimensional

Arrays
Understanding Chapter 11, Working with Arrays, is essential to understanding the concepts
presented in this chapter. Please read through and ensure you understand that chapter
before reading this one.

In Chapter 11, Working with Arrays, we explored a one-dimensional array, where an array
is a contiguous group of the same data type accessed via a basename and an index. In this
chapter, we will extend the concept of arrays from one dimension to many dimensions.
Multi-dimensional arrays occur in a myriad of objects that we deal with in daily life—from
a simple checkers board or chessboard, a multiplication table, or the pixels on a screen to
more complex three-dimensional objects, such as volumetric spaces. We will see that these
are simple extensions of one-dimensional arrays.

The following topics will be covered in this chapter:

Understanding the basic concepts of arrays
Declaring and initializing arrays of various dimensions
Accessing elements of arrays of various dimensions
Using looping to traverse multi-dimensional arrays
Using multi-dimensional arrays in functions

Technical requirements
Continue to use the tools you chose from the Technical requirements section of Chapter 1,
Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Working with Multi-Dimensional Arrays Chapter 12

[233]

Going beyond one-dimensional arrays to
multi-dimensional arrays
It is common to present a two-dimensional array as an array of a one-dimensional array.
Likewise, a three-dimensional array can be thought of as an array of two-dimensional
arrays. Furthermore, an N-dimensional array can be thought of as an array of (N - 1)-
dimensional arrays.

This approach, while mathematically correct, may not provide a useful, working
framework for multi-dimensional arrays. Therefore, before we can address the C syntax for
declaring, initializing, and accessing multi-dimensional arrays, a proper conceptual
framework must be developed. With that firmly understood, we can then delve into C's
syntax for multi-dimensional arrays.

Revisiting one-dimensional arrays
An array of one dimension is a block, or contiguous grouping, of a specified data type
accessed via a basename; each element is then accessed via an offset of that basename.

A one-dimensional array may be called a vector in some domains, while in others it may be
referred to as a linear array. To review what we covered in the last chapter, we will use a
one-dimensional array as the basis for our discussion, as follows:

int array1D[5] = { 1 , 2 , 3 , 4 , 5 };

Here, array1D has five integers, initialized to the values of 1 through 5 for the values at
the zeroth through fourth offsets. array1D is a block of five integers; they are contiguous
(or side-by-side) so that the block takes up 5 * sizeof(int) bytes of memory. The array
has five elements, with offsets from the base to each element in the range of 0..4. This
linear array can be represented vertically, as follows:

Working with Multi-Dimensional Arrays Chapter 12

[234]

Alternatively, it can be represented horizontally, as follows:

Both of these diagrams represent a one-dimensional array of five elements. In either case,
incrementing the array's index provides access to the very next element of the array. This is
an essential property of C arrays to keep in mind as we move on to more dimensions.

Of the two graphical representations, the former is more technically accurate with respect
to how the computer allocates and accesses the array. We will revisit this representation in
Chapter 13, Using Pointers, and Chapter 14, Understanding Arrays and Pointers. However,
for our conceptual framework, the latter is a better representation as a block of linear
elements. Looking at array1D in this way will help us make a logical transition to two-
dimensional arrays and beyond.

Moving on to two-dimensional arrays
A two-dimensional array can be conceptualized either as an array of arrays (one-
dimensional) or as a matrix consisting of rows and columns. For our discussion, we'll
consider a two-dimensional array, named array2D, either as an array of four arrays of five
one-dimensional elements or as a matrix of four rows and five columns. Both
conceptualizations are equivalent.

In terms of the real world, there are many examples of two-dimensional arrays—hotel mail
slots, windows on the side of a modern skyscraper, any video display that has a matrix of
pixels, the periodic table of elements, a spreadsheet of multiple rows and columns, the
selection of snacks in a vending machine, and a baseball innings scoreboard, to name a few.
A two-dimensional array in C, therefore, is a useful tool for modeling many real-world
matrices or grids.

Working with Multi-Dimensional Arrays Chapter 12

[235]

If we consider array2D as an array of arrays, we have an array of four groups of a defined
type. Here, the defined type happens to be a one-dimensional array of five elements; each
element in the one-dimensional array is an integer. Therefore, each of the four groups has a
single array consisting of five integers. So, we have four elements of a five-integer array for
a total of 20 integers in the two-dimensional array. A graphical representation of this is as
follows:

If we consider array2D as a matrix, we have a table (or grid) of five columns and four
rows. Here, we have 20 integers in our two-dimensional array (five columns by four
rows). A graphical representation of this is similar to the previous array of arrays, except
that we think of it only in terms of rows and columns. It would look as follows:

Working with Multi-Dimensional Arrays Chapter 12

[236]

In both cases, array2D is a contiguous block of 20 integers, regardless of how we
conceptualize it. Note that the basename always takes the leftmost and uppermost location
in our block. It is always the very first element in an array.

Having crossed this conceptual chasm from one to two dimensions, we will again apply
this concept to three-dimensional arrays.

Moving on to three-dimensional arrays
A three-dimensional array can be conceptualized either as an array of arrays of arrays (two-
dimensional arrays of one-dimensional arrays) or as a three-dimensional volume consisting
of the X, Y, and Z dimensions, where the Y and X dimensions are rows and columns,
respectively. For our discussion, we'll consider a three-dimensional array, named array3D,
either as a collection of three arrays, each consisting of 20 two-dimensional arrays, or as a
volume of three layers (the Z dimension), four rows (the Y dimension), and five columns
(the X dimension). Both conceptualizations are equivalent. Layers is an arbitrary name for
the arrays in the Z dimension.

As you will soon see, the order of array dimensions in C is significant. The natural way to
think of three-dimensional space is as an X-axis, Y-axis, and Z-axis. In C, we should think of
the higher dimensions first. So, that means the Z-axis, the Y-axis, and then the X-axis. Hold
that thought; it will be reflected in C syntax in the next section.

In terms of the real world, there are many examples of three-dimensional arrays—offices in
a building with many floors, the three-dimensional space that we live and move around in
(useful, for instance, for games), and spatial dimensions for modeling objects, to name just a
few. A three-dimensional array in C, therefore, is a useful tool for modeling many real-
world volumes and three-dimensional spaces.

When we consider array3D as an array of arrays, we have an array of three groups of a
defined type. Here, the defined type happens to be a two-dimensional array of four
elements; each element in the two-dimensional array is a one-dimensional array of integers.
Therefore, each of the three groups has a single array consisting of 20 integers.

Working with Multi-Dimensional Arrays Chapter 12

[237]

So, we have three elements—each of a 20-integer array—for a total of 60 integers in the
three-dimensional array. A graphical representation of this is as follows:

When we consider array3D as a volume, we have a grid of three layers of five columns and
four rows. In this case, we have 60 integers in our three-dimensional array (3 layers x 5
columns x 4 rows). A graphical representation of this is similar to the array of arrays, except
that we think of it only in terms of layers, rows, and columns. It would look as follows:

In both cases, array3D is a contiguous block of 60 integers (5 columns x 4 rows x 3 layers),
regardless of how we conceptualize it. Note that the basename always takes the leftmost
and uppermost location in our block. It is always the very first element in any array.

Working with Multi-Dimensional Arrays Chapter 12

[238]

This ends our visual conceptualization of multi-dimensional arrays; firstly, because
graphically representing more than three dimensions is difficult, and secondly, because
while we can conceptualize four or more dimensions, for many of us, the visualization of
more than three dimensions is difficult. Lastly, just as we have applied the approach of
going from one to two to three dimensions, we can likewise extend this same thinking to
more dimensions without requiring a graphical representation.

Considering N-dimensional arrays
As we move from three dimensions to four, five, or more, we can continue to conceptualize
an array of N dimensions either as an array of (N-1) dimensions or as a contiguous block of
basic elements whose size is the multiplicative result of each dimension. Say we wanted a
four-dimensional array that has 7 x 3 x 4 x 5 for each dimension. This four-
dimensional array, named array4D, can be conceptualized as an array of seven arrays of
array3d or as a block whose size is 420 elements, or 420 = 5 x 4 x 3 x 7

Here, 5 is the number of first-dimension elements, 4 is the number of second-dimension
elements, 3 is the number of third-dimension elements, and 7 is the number of fourth-
dimension elements.

C, as specified, allows an unlimited number of array dimensions. The actual limit depends
on the limits of the compiler used. In general practice, however, it is unwieldy, both in
terms of human conceptualization and in terms of machine memory allocation, to have an
array greater than, say, three or four dimensions. This does not rule out arrays of a higher
number of dimensions, but as we will see in Chapter 16, Creating and Using More Complex
Structures, we will be able to combine arrays and structures in various ways to make
complex collections of data that closely match their real-world representations, as well as
provide conceptual clarity and conciseness.

Declaring and initializing multi-dimensional
arrays
With a firm, conceptual grasp of multi-dimensional arrays, we can now explore the C
syntax for declaring them. As we move from two to more dimensions, we will continue to
use array1D, array2D, array3D, and array4D to match the previous section. As each
array is declared, pay particular attention to the order in which the array indices appear in
each definition. In general, the highest-order dimension appears at the leftmost side and the
lowest-order dimension (in our example, array1D) appears in the rightmost position.

Working with Multi-Dimensional Arrays Chapter 12

[239]

Before we begin, we'll define some size constants, as follows:

const int size1D = 5;
const int size2D = 4;
const int size3D = 3;
const int size4D = 7;

In each of our declarations, we could simply use literal numbers to specify each
dimension's size. Instead, we'll use the size1D, size2D, size3D, and
size4D constants, not just in this section but for the remainder of this chapter, to firmly fix
the relationship of a dimension's position as we declare, initialize, and access multi-
dimensional array elements.

Declaring arrays of two dimensions
Just as in declaring a one-dimensional array, [and] are used to specify each dimension.
array2D is declared using numeric literals for its two dimensions, as follows:

int array2D[4][5];

Using the constants that we already defined, we would declare array2D, as follows:

int array2D[size2D][size1D];

We could also use variables:

int rows = 4;
int cols = 5;

int array2D[rows][cols];

As with any array declaration using variables, the value of the variables may later change,
but the array size is fixed and unchangeable after it is declared.

Initializing arrays of two dimensions
We can initialize array2D at the declaration stage in several ways, as follows:

int array2D[4][5] = {0};

array2D is initialized with all of its elements set to 0. Note that we cannot use our constant
sizes to initialize the array at declaration. Try it and see what error message you get.

Working with Multi-Dimensional Arrays Chapter 12

[240]

To give each element a different value at the declaration stage, we would initialize it as
follows:

int array2D[size2D][size1D] = { {11 , 12 , 13 , 14 , 15 } ,
 {21 , 22 , 23 , 24 , 25 } ,
 {31 , 32 , 33 , 34 , 35 } ,
 {41 , 42 , 43 , 44 , 45) };

In this declaration, the first row of elements is given the 11..15 values, and the second row
is given the 21..25 values. Notice how the initialization of the array in this manner closely
matches our conceptualization of a two-dimensional array earlier in this chapter.

Declaring arrays of three dimensions
Moving on to three dimensions, we would declare array3D using numeric literals, as
follows:

int array3D[3][4][5];

Using the constants already defined, we would declare array3D, as follows:

int array3D[size3D][size2D][size1D];

We could also use variables:

int x = 5;
int y = 4;
int z = 3

int array3D[z][y][x];

Note how the z dimension (the highest order) comes first and the x dimension (the lowest
order) comes last in the declaration.

Initializing arrays of three dimensions
We can initialize array3D at the declaration stage in several ways, as follows:

int array3D[3][4][5] = {0};

array3D is initialized with all of its elements set to 0. Note that we cannot use our constant
sizes to initialize the array at declaration. Try it and see what error message you get.

Working with Multi-Dimensional Arrays Chapter 12

[241]

To give each element a different value at the declaration stage, we would initialize it as
follows:

int array3D[size3D][size2D][size1D] =
 { { {111 , 112 , 113 , 114 , 115 },
 {121 , 122 , 123 , 124 , 125 } },
 { {211 , 212 , 213 , 214 , 215 },
 {221 , 222 , 223 , 224 , 225 } },
 { {311 , 312 , 313 , 314 , 315 },
 {321 , 322 , 323 , 324 , 325 } } };

In this declaration, the first Z layer of elements is given the
values 111..115 and 121..125. The second Z layer of elements is given the
values 211..215 and 221..225. The third Z layer of values is given the
values 311..315 and 321..325. Again, notice how the initialization of the array in this
manner closely matches our conceptualization of a three-dimensional array earlier in this
chapter.

Declaring and initializing arrays of N dimensions
We can declare array4D as follows:

int array4D[size4D][size3D][size2D][size1D];

Note how the size4D dimension (the highest order) comes first and the size1D dimension
(the lowest order) comes last in the declaration. array4D is declared and all of its elements
are initialized to 0. Initializing arrays with many dimensions or large arrays (arrays with a
large number of elements in each dimension) at declaration time becomes tedious. Later in
this chapter, we'll initialize arrays with loops.

Accessing elements of multi-dimensional
arrays
To access an array element using array notation, we must be consistent in using both the
dimensions of the array and the valid range of offsets for each dimension.

Working with Multi-Dimensional Arrays Chapter 12

[242]

To access an element of an array, we would use the [and] notation for each of its offsets in
each dimension. Remember that C indices are zero-based. It is better to think of them as
offsets from the array base. For example, the column offset for the first element in a one-
dimensional array is [0]. The row offset for the first row of a two-dimensional array is
[0][x]. The layer offset for the first layer of a three-dimensional array is [0][y][x].
Putting this knowledge to work, let's access the third element of our various arrays, as
follows:

int third;
first = array1D[2]; // third element.
first = array2D[0][2]; // third element of 1st row.
first = array3D[0][0][2]; // third element of 1st layer and 1st row.
first = array4D[0][0][0][2]; // third element of 1st volume, 1st layer,
 // and 1st row.

Using numeric literals as indices for the last element of each dimension, we can get the last
element of each of our arrays, as follows:

int last;
last = array1D[4]; // last element.
last = array2D[3][4]; // last element of last row.
last = array3D[2][3][4]; // last element of last layer of last row.
last = array4D[6][2][3][4]; // last element of last volume, last layer,
 // and last row.

Getting the last element is a bit more cumbersome but less error-prone when we know the
size of the dimension. Using the constants defined earlier in this chapter, we can get the last
element of each array, as follows:

int last;
last = array1D[size1D-1]; // last element.
last = array2D[size2D-1][size1D-1]; // last element of
 // last row.
last = array3D[size3D-1][size2D-1][size1D-1]; // last element of last
 // layer of last row.
last = array4D[size4D-1][size3D-1][size2D-1][size1D-1];

In each case, the last dimension is that dimension's size minus 1; this is consistent with
zero-based indexing or zero-based offsets. This method is less error-prone if and when the
size of our arrays changes. By using a constant and simple calculation, the last elements
always correct themselves for the given dimension size (assuming that the size constant is
used throughout).

Working with Multi-Dimensional Arrays Chapter 12

[243]

Note that we can both retrieve values from the array elements or assign values to them with
array notation. This is to say that anywhere we can have a variable, we can also use an
array element using its notation:

last = INT_MAX;
array1D[size1D-1] = last;
array2D[size2D-1][size1D-1] = last;
array3D[size3D-1][size2D-1][size1D-1] = last;
array4D[size4D-1][size3D-1][size2D-1][size1D-1] = last;

In each case, the very last element of the array is assigned the value of last, which is the
predefined INT_MAX constant.

Manipulating multi-dimensional arrays –
loops within loops
There are many ways in which to use loops to access elements within multi-
dimensional arrays. The best way, however, is to use nested for()… loops. In a nested
loop, the outermost loop contains one or more loops within it, nested such that the outer
loop completely contains the inner loop. When using nested loops, the outermost loop
manipulates the index of the highest-order dimension, while the innermost loop
manipulates the index of the lowest-order dimension. We will explore two- and three-
dimensional looping. It is then simple to extend the nested loops to as many as are needed
for an array with more than three dimensions.

When nesting loops, it is a common convention to use variables named i, j, k, and so on to
hold the values of the array offsets, with i being the first-order dimensional offset, j being
the second-order dimensional offset, k being the third-order dimensional offset, and so on.
This convention is optional. For two-dimensional arrays, row and col might be more
descriptive offset variables and for three-dimensional arrays, x, y, and z might be more
descriptive. Use whichever best fits the situation and/or appropriately describes what the
array represents.

Working with Multi-Dimensional Arrays Chapter 12

[244]

Using nested loops to traverse a two-dimensional
array
To traverse a two-dimensional array, we use a loop within a loop. The outer loop controls
the row offset and the inner loop controls the column offset. Our nested loop structure is as
follows:

for(j = 0; j < size2D ; j++) { // j : 0..(size2D-1)
 for(i = 0; i < size1D ; i++) { // i : 0..(size1D-1)
 array2D[j][i] = (10*j) + i ;
 }
}

Each element of array2D is assigned a value computed from i and j.

Note that for each loop counter variable, we show the range of valid values as a comment.
This is only a reminder for us; the goal is to help us keep our offsets within the proper
range.

Using nested loops to traverse a three-
dimensional array
To traverse a three-dimensional array, we use a two-dimensional loop within a loop. The
outer loop controls the layer offset, and the inner loops control the row and column offsets.
Our nested loop structure is as follows:

for(k = 0 ; k < size3D ; k++) { // k : 0..(size3D-1)
 for(j = 0 ; j < size2D ; j++) { // j : 0..(size2D-1)
 for(i = 0 ; i < size1D ; i++) { // i : 0..(size1D-1)
 array2D[k][j][i] = (k*100) + (j*10) + i ;
 }
 }
}

Each element of array3D is assigned a value based on the offset values of i, j, and k.

What if we wanted to assign all the values of array2D to the last layer of array3D? Again,
we would use nested loops, as follows:

for(j = 0; j < size2D ; j++)
{
 for(i = 0; i < size1D ; i++)

Working with Multi-Dimensional Arrays Chapter 12

[245]

 {
 array3D[(size3D-1)][j][i] = array2D[j][i] + (100*(size3D-1));
 }
}

(size3D-1) is the offset of the last layer of the three-dimensional array. This offset doesn't
change in the nested loops, whereas the other two offsets do change in the nested loops.

Using multi-dimensional arrays in functions
Now that we can declare, initialize, and access arrays of many dimensions, we are ready to
create functions to manipulate them:

First, let's create a function to initialize a two-dimensional array and a function to1.
initialize a three-dimensional array, as follows:

void initialize2DArray(int row , int col , int array[row][col])
{
 for(int j = 0 ; j < row ; j++) { // j : 0..(row-1)
 for(int i = 0 ; i < col ; i++) { // i : 0..(col-1)
 array[j][i] = (10*(j+1)) + (i+1);
 }
 }
}

void intialize3DArray(int x , int y , int z , int array[z][y][x]
){
 for(int k = 0 ; k < z ; k++) { // k : 0..(z-1)
 for(int j = 0 ; j < y ; j++) { // j : 0..(y-1)
 for(int i = 0 ; i < x ; i++) { // i : 0..(x-1)
 array[k][j][i] = (100*(k+1)) + (10*(j+1)) + (i+1);
 }
 }
 }
}

In each function, nested loops are used to iterate over the entire array, initializing
each element to a value based on their indices.

Next, let's create functions to sum the elements of each array, as follows:2.

int sum2DArray(int row , int col , int array[row][col]) {
 int sum = 0;
 for(int j = 0 ; j < row ; j++) { // j : 0..(row-1)
 for(int i = 0 ; i < col ; i++) { // i : 0..(col-1)

Working with Multi-Dimensional Arrays Chapter 12

[246]

 sum += array[j][i];
 }
 }
 return sum;
}

int sum3DArray(int z , int y , int x , int array[z][y][x]) {
 int sum = 0;
 for(int k = 0 ; k < z ; k++) { // k : 0..(z-1)
 for(int j = 0 ; j < y ; j++) { // j : 0..(y-1)
 for(int i = 0 ; i < x ; i++) { // i : 0..(x-1)
 sum += array[k][j][i];
 }
 }
 }
 return sum;
}

Each function iterates over the entire two-dimensional or three-dimensional array
and totals the values of each element in the array.

Next, let's create functions to print the contents of each array, as follows:3.

void print2DArray(int row , int col , int array[row][col]) {
 for(int j = 0 ; j < row ; j++) { // j : 0..(row-1)
 for(int i = 0 ; i < col ; i++) { // i : 0..(col-1)
 printf("%4d" , array[j][i]);
 }
 printf("\n");
 }
 printf("\n");
}

void print3DArray(int z , int y , int x , int array[z][y][x]) {
 for(int k = 0 ; k < z ; k++) { // k : 0..(z-1)
 for(int j = 0 ; j < y ; j++) { // j : 0..(y-1)
 for(int i = 0 ; i < x ; i++) { // i : 0..(x-1)
 printf("%4d" , array[k][j][i]);
 }
 printf("\n");
 }
 printf("\n");
 }
}

Working with Multi-Dimensional Arrays Chapter 12

[247]

Finally, we create the main() function to prove our work, as follows:4.

#include <stdio.h>
#include "arraysND.h"

int main(void)
{
 const int size1D = 5;
 const int size2D = 4;
 const int size3D = 3;

 int array2D[size2D][size1D];
 int array3D[size3D][size2D][size1D];

 int total = 0;
 initialize2DArray(size2D , size1D , array2D);
 print2DArray(size2D , size1D , array2D);
 total = sum2DArray(size2D , size1D , array2D);
 printf("Total for array2D is %d\n\n" , total);
 initialize3DArray(size3D , size2D , size1D , array3D);
 print3DArray(size3D , size2D , size1D , array3D);
 total = sum3DArray(size3D , size2D , size1D , array3D);
 printf("Total for array3D is %d\n\n" , total);
}

In this program, we declare some constant sizes and a two-dimensional and three-
dimensional array, and then call functions to manipulate them, first to initialize each array,
then to print its contents, and finally to compute the sum of all elements in the array.

It is now time, if you have not done so already, to create a program yourself. This program
is named arraysND.c (for N-dimensional arrays). Create a new file in your favorite editor
and add main() and the functions. Remember to put the function prototypes
into arraysND.h and save that file. Compile arrayND.c. At this point, you may find that
any number of typos somehow creep in, so you may have to go through several iterations
of editing, saving, and compiling until your compilation succeeds. Then, run the program.
You should see the following output:

Working with Multi-Dimensional Arrays Chapter 12

[248]

As a challenge, if you are up to it, modify the print2DArray() and print3DArray()
functions to also print out the column and row headings or the x, y, and z headings.
Printing is fussy; prepare to be at least a little frustrated. I am certain you will have to
iterate many times, as well as edit, compile, and run until your output looks something like
the following:

Working with Multi-Dimensional Arrays Chapter 12

[249]

While I was creating this output, I had to edit, compile, run, and verify the output about a
dozen times until I got all the little tricky bits just the way that I wanted. But persistence
pays off.

In case you get frustrated and give up (please don't give up!), the source code provided on
the GitHub repository provides both a basic print function and a pretty print function for
each array. Compare your efforts to the code given, but do so only after you have
successfully made your own pretty print functions.

Summary
In this chapter, we have taken the basic idea of a one-dimensional array from Chapter 11,
Working with Arrays, and extended it to two-dimensional, three-dimensional, and even N-
dimensional arrays. A conceptual basis for multi-dimensional arrays has been developed.
Then, we have seen how to declare, initialize, access, and iterate over multi-dimensional
arrays in C's syntax. Emphasis was placed on zero-based array indices (more appropriately
known as offsets) and on the somewhat peculiar order in which indices are specified—left
to right from the highest-order dimension to the lowest-order dimension. This order,
however, lends itself somewhat elegantly to nested looping to iterate over multi-
dimensional arrays. This chapter may have seemed long; the intent was to demonstrate
how consistently the same concepts can be applied from one-dimensional arrays to N-
dimensional arrays.

In this chapter, we have not spent too much time delving into what the base of an array is.
Before we can get a greater understanding of array basenames, we must first visit another
essential and unique feature of C—pointers. In Chapter 13, Using Pointers, we will explore
pointer concepts, basic memory concepts, and elemental pointer arithmetic. Chapter
13, Using Pointers, is essential to understanding the chapter that follows, Chapter 14,
Understanding Arrays and Pointers, where we'll delve further into array basenames and
explore some alternate ways to both access and iterate over array elements using pointers.

13
Using Pointers

A pointer is a variable that holds a value that is the location (or memory address) of another
value. The pointer type not only identifies the variable identifier as a pointer but also
specifies what kind of value will be accessed at the location held by the pointer.

It is essential to learn how to verbally differentiate the address of notation (a pointer value)
versus the target of notation (the value found at the address that the pointer points to). In
this chapter, we will strive to demystify C pointers.

Learning how to properly use pointers expands both the expressiveness of C programs as
well as the range of problems that can be solved.

The following topics will be covered in this chapter:

Dispelling some myths and addressing some truths about C pointers
Understanding where values are stored and how they are accessed
Declaring pointers and naming them appropriately
Understanding the NULL pointer and void*
Pointer arithmetic
Accessing pointers and their targets
Comparing pointers
Talking and thinking about pointers correctly
Using pointers in function parameters
Accessing structures via pointers

Using Pointers Chapter 13

[251]

Technical requirements
Continue to use the tools you chose from the Technical requirements section of Chapter
1, Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Addressing pointers – the boogeyman of C
programming
Before we begin our understanding of declaring, initializing, and using pointers, we must
address some common misconceptions and unavoidable truths about C pointers.

C pointers are often considered one of the most troublesome concepts in C, so much so that
many modern languages claim to have improved on C by removing pointers
altogether. This is unfortunate. In many cases, this limits the language's power and
expressiveness. Other languages still have pointers but severely restrict how they may be
used.

Pointers in C are one of its most powerful features. With great power comes great
responsibility. That responsibility is nothing more than knowing how to correctly and
appropriately use the power that is given. This responsibility also involves knowing
when not to use that power and to understand its limits.

Untested and unverified programs that incorrectly or haphazardly employ pointers may
appear to behave in a random fashion. Programs that once worked reliably but have been
modified without understanding or proper testing become unpredictable. The program
flow and, consequently, program behavior becomes erratic and difficult to grasp. Improper
use of pointers can wreak real havoc. This is often exacerbated by an overly complex and
obfuscated syntax, both with and without pointers. Pointers, in and of themselves, are not
the cause of these symptoms.

It is my point of view that full knowledge of C pointers greatly enhances a programmer's
understanding of how programs and computers work. Furthermore, most—if not
all—programming errors that use pointers arise from untested assumptions, improper
conceptualization, and poor programming practices. Therefore, avoid those practices. We
will focus on proper conceptualization, methods of testing assumptions, and good
programming practices.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Using Pointers Chapter 13

[252]

In the preceding chapters, we emphasized a test and verify approach to programming
behavior. This is not only a good approach in general but is also especially important when
using pointers. This approach, hopefully, is now somewhat ingrained in your thinking
about developing programs. With experience—based on practical experiments and proof
by example (both of which we covered in earlier chapters)—your knowledge and
understanding of pointers is reinforced so that they can be mastered quickly and used
safely with confidence.

Why use pointers at all?
If pointers are so problematic, why use them at all? First and foremost, pointers are not the
problem; misuse of pointers is the problem.

Nonetheless, there are four main uses for pointers:

To overcome the call-by-value restriction in function parameters: Pointers
expand the flexibility of function calls by allowing variable function parameters.
As an alternative to array subscripting: Pointers allow access to array elements
without subscripting.
To manage C strings: Pointers allow easy (ahem, easier) allocation and
manipulation of C strings.
For dynamic data structures: Pointers allow memory to be allocated at runtime
for useful dynamic structures, such as linked lists, trees, and dynamically sized
arrays.

We will deal with the first point, the mechanics of pointers and variable function
parameters, in this chapter. The second point will be explored in Chapter 14, Understanding
Arrays and Pointers. The third point will be explored in Chapter 15, Working with Strings.
Lastly, the fourth point will be explored in Chapter 18, Using Dynamic Memory Allocation.

Pointers allow our programs to model real-world objects that are dynamic—that is, their
size or the number of elements is not known when the program is written and their size
and number of elements will change as the program runs. One such real-world example is a
grocery list. Imagine your list could only ever hold, say, six items; what do you do if you
need seven items? Also, what if when you go to the store you remember three more items
to add your list?

Because pointers give us an alternative means to access structures, arrays, and function
parameters, their use enables our programs to be more flexible. Pointers, then, become
another mechanism to access values to choose from to best fit the needs of our program.

Using Pointers Chapter 13

[253]

Introducing pointers
A pointer is a variable whose value is the location (or memory address) of some other
variable. This concept is so basic yet so essential to understanding pointers that it bears
repeating.

A variable identifies a value stored at a fixed location. It consists of a type and an identifier.
Implicit in the definition is its location. This location is fixed and cannot be changed. The
value is stored at that location. The location is primarily determined by where a variable is
declared in a program. The variable identifier, then, is our assigned name for the location of
that value; it is a named location to store a value of a given type. We rarely, if ever, care
about the specific value of that location—in fact, we never do. So, we never care about the
specific address of a variable. We only care about the name of the location or our variable
identifier.

A pointer variable, like any other variable, also identifies a value stored at a fixed location.
It also consists of a type and an identifier. The value it holds, however, is the location of
another variable or named location. We don't specifically care about the value of the pointer
variable itself, except that it contains the location of another variable whose value we do
care about.

So, while a variable's location cannot change, its contents can. For pointer variables, this
means that a pointer's value can be initialized to one named location and then later
reassigned to another named location. Two or more pointers can even have the same
named location; they can point to the same place.

To highlight the difference between a variable that is named and contains a value and a
pointer variable that is also named but whose value is an address, we first need to
understand the concepts of the direct addressing of values and the indirect addressing of
values.

Understanding direct addressing and indirect
addressing
When we use a non-pointer variable, we are, in fact, accessing the value directly through
the variable's identifier (its named location). This is called direct addressing.

When we use a pointer variable to access a value at its assigned, named location (a variable
in a different location), we are accessing that value through the pointer variable. Here, we
access the variable indirectly through the pointer. In essence, from the pointer value, we get
the address of the value we want, then we go to that address to get the actual value.

Using Pointers Chapter 13

[254]

Before going further, we need to understand some background concepts—memory and
memory addressing.

Understanding memory and memory addressing
First, it is essential to understand that everything that runs on a computer is in memory.
When we run a program, it is read from the disk, loaded into memory, and becomes the
execution stream. When we read from a file on a disk, CD, or flash drive, it is first read into
memory and accessed from there, not from its original location (this is an oversimplification
since there is a bit more that goes on). All of the functions we call and execute are in
memory. All of the variables, structures, and arrays we declare are given their own
locations in memory. Finally, all of the parts of the computer that we can read from or write
to are accessible through some predefined memory location. How the OS handles all of the
system devices, system resources (memory), and the filesystem is beyond the scope of this
book.

Second, once we understand that everything is in memory, we must know that each byte of
memory is addressable. The memory address is the starting location of a value, a function,
or even a device. To a running program, memory is seen as a continuous block of bytes,
each having their own address from 1 to the largest unsigned int value available on that
computer. Address 0 has a special meaning, which we will see later in this chapter. An
address, then, is the nth byte in the range of all possibly addressable bytes on the computer.

If the computer uses 4 bytes for an unsigned int value, then the address space of that
computer's memory is from 1 .. 4,294,967,295, just over 4 billion bytes or 4 Gigabytes
(GB). This is known as a 32-bit address space. It may seem like a large number, but most
computers today come with at least this much memory, some with 8, 16, or even 64 GB of
memory (RAM). Because of this, a 4 GB address space is insufficient and leaves most of the
other memory unaddressable, and so inaccessible.

If the computer uses 8 bytes for an unsigned int value, then the address space of that
computer's memory is from 1 .. 18,446,744,073,709,551,615 bytes, or over 18
quintillion bytes. This is known as a 64-bit address space and holds many orders of
magnitude more memory than any computer can hold today or in the foreseeable future.

The actual physical memory (which is physically present on the machine) may be far
smaller than the amount of memory that is virtually addressable. A 64-bit computer can
address memory over 18 quintillion bytes, but computers of any size rarely have anything
even close to that much physical memory. The OS provides mechanisms to map the virtual
address space into much smaller physical address space and manage that mapping as
needed.

Using Pointers Chapter 13

[255]

A 64-bit address space provides a very large working address space available to a program.
Programs that model sub-atomic reactions, perform finite-element analysis on extremely
large structures (such as very long bridges), simulate jet engine performance, or simulate
astronomical models of our galaxy require enormous address spaces.

Lucky for us, dealing with the need for such large address spaces is not a problem for us
today, nor is it a problem for us tomorrow. We can have a much simpler working concept
of an address space while basking in the knowledge that we will not have to worry about
the limits of our programs in a 64-bit address space anytime soon.

Managing and accessing memory
C provides ways for a program to allocate, release, and access virtual memory in our
physical address space; it is then up to the OS to manage the physical memory. The OS
swaps virtual memory in and out of the physical memory as needed. In this way, our
program is only concerned with the virtual memory address space.

C also provides some limits as to what memory can be accessed and how it can be
manipulated. In Chapter 17, Understanding Memory Allocation and Lifetime, and Chapter 18,
Using Dynamic Memory Allocation, we will explore some of the ways that C gives us limited
control of our program's memory. In Chapter 20, Getting Input From the Command Line, and
Chapter 23, Using File Input and File Output, we will explore how C allows us to get data
dynamically from the user via the command line, as well as read and write data files. In
each of these chapters, we will expand our conceptualization of memory and how it is used
by our programs.

C was written before Graphical User Interfaces (GUIs) were developed; therefore, there is
no concept of pixels and colorspaces, audio ports, or network interfaces. To C, these are all
just Input/Output (IO) streams that are tied to a device accessed through memory that we
can read from or write to via an intermediary program or library.

Lastly, every time we run our program, the memory addresses within it will likely change.
This is why we are concerned with named locations. and never specific memory
addresses.

So, to summarize, we now know the following:

Memory is seen as one large contiguous block.
Everything in a computer is stored somewhere in memory or is accessible via a
memory location.

Using Pointers Chapter 13

[256]

Every byte in a computer's memory has an address.
Named locations (variables) are fixed addresses in memory.

Exploring some analogies in the real world
Real-life analogies for pointers are abundant. We'll explore two analogies to help provide
some clarity about them.

In our first analogy, John, Mary, Tom, and Sally each own a different thing that they will
give to us when we ask them for it. John owns a book, Mary owns a cat, Tom owns a song,
and Sally owns a bicycle. If you want, say, a song, you ask Tom. If you want a bicycle, you
ask Sally. If we want something, we go directly to the owner of it. That is direct addressing.

Now, say we don't know who each of them is or what they own. Instead, there is someone
else we know, say, Sophia, who knows each person and what they own. To get something
that we want, we have to go to Sophia, who then goes to the proper person, gets what they
own, and gives it to us. Now, to get a book, we go to Sophia, who then goes to John to get
the book and gives it to us. To get a cat, we again go to Sophia, who then goes to Mary to
get the cat and gives it to us. We still don't know anyone but Sophia, but we don't care
because we can still get everything indirectly through Sophia. This is indirect addressing.

John, Mary, Tom, and Sally are similar to variables. When we want the things they hold, we
go directly to them. Sophia is similar to a pointer variable. We don't know where each thing
we want is held, so we go to the pointer, which then goes to where the thing we want is
held. We go to the things we want indirectly through the pointer.

Our second analogy involves a mailman and the mailboxes where we receive our mail. In a
neighborhood or city, each building has a street name and number, as well as a city, state,
or province and a postal code. All of these together uniquely identify a building's address.
The building could be a home, a farm, an office, a factory, and so on. In front of or attached
to the buildings are mailboxes, each one associated with a specific building. The mailboxes
could stand alone or be grouped together. In the mailboxes, envelopes, parcels, magazines,
and so on are delivered. Anyone can place something in any mailbox and the addressee
(the resident of the building) can remove the content.

We can think of the mailboxes as variable names (fixed locations) and the content placed in
those mailboxes as the values we assign to variables. Furthermore, each mailbox has a
unique address, comprised of several parts, just as variables have a unique address,
comprised of just a single number—its byte address. Just like a mailbox, a value can be
assigned to a variable and the value can be accessed from that variable.

Using Pointers Chapter 13

[257]

If we want to send a parcel to an address, we, in essence, give it to the mailman (a named
identifier) to deliver it for us. The mailman travels to the address indicated and places the
parcel in the mailbox for that address.

We can think of the mailman as the point that takes an address, travels to it, and takes or
leaves a value at that address.

Analogies, however, are rarely perfect. The preceding two analogies, in the end, are not as
accurate as we might like. So, let's look at a diagram of memory with some variables and a
pointer variable that points to one of the variable's locations:

Here, memory is seen as a linear stream of bytes. In this diagram, we are not concerned
with the actual byte addresses and so they are not shown. We see three named integer
locations (variables)—length, width, and height. Because these are int values, they each
take up 4 bytes. We also see a pointer variable, pDimension, which takes up 8 bytes and
points to the height named location. The value of pDimension is the address of
the height named location. We never need to be concerned about the actual value of a
pointer. Instead, we should be concerned about the named location it points to.

Using Pointers Chapter 13

[258]

Note that there are some bytes that are neither named nor used. These are the padding
bytes that the compiler uses to align variables of different sizes. We saw this before with
structures in Chapter 9, Creating and Using Structures. While we need to be aware that
padding bytes exist, we should also be aware that we cannot predict their presence or
absence, nor can we control them. Therefore, we should not be overly concerned about
them.

We will come back to this diagram once we have more details about declaring and
assigning pointers.

Declaring the pointer type, naming pointers,
and assigning addresses
The most basic aspects of pointers are the following:

We can declare a variable of the pointer type
We can assign an already-declared named location to it
We can perform a limited number of operations on pointers

So, while a pointer is a variable and can change, we do not assign values to it willy-nilly. A
pointer should only be assigned a value that is an already-declared and named location.
This means that a pointer must point to something that already exists in memory.

Because pointers give us values somewhat differently than simple variables, we also need
to consider some naming conventions that set them apart from regular variables. These are
conventions only and are intended to make the purpose of the variable as a pointer clear.

Declaring the pointer type
A pointer is a variable. Therefore, it has a type and an identifying name. It is distinguished
as a pointer at declaration with the * notation.

The syntax for a pointer is type * identifier;, where type is either an intrinsic type or
a custom type, * indicates a pointer to the given type, and identifier is the name of the
pointer variable. The actual type of a pointer variable is not just type, but type*. This is
what distinguishes a direct variable from an indirect variable.

Using Pointers Chapter 13

[259]

A pointer must have a type for the thing it points to. A pointer type can be any intrinsic
type (such as int, long, double, char, byte, and so on) or any already-defined custom
type (such as an array, struct, typedef, and so on). The pointer's value (an address) can be
any named location (the variable identifier) that has that type. We will see why this is
essential when we access the value at the pointer's address.

An example of an integer pointer is the following:

int height;
int width;
int length;

int* pDimension;

Here, we can see three integer variables—height, width, and length—and a single
pointer variable, pDimension, which can hold the address of any integer variable.
pDimension cannot hold the address of a variable of the float, double, or char types (to
name just three)—only int. The type of pDimension is int*.

In this code fragment, none of the variables, nor the pointer, has been assigned a value.

Naming pointers
Because pointers hold addresses of values and not the desired values themselves, it is a
good idea to differentiate between them by naming the pointers slightly differently than the
direct variables. There are several naming conventions that are more or less in widespread
use. This includes prefixing or suffixing ptr or p to the name of the variable identifier. So,
our identifiers may appear as follows:

int anInteger;

int* ptrAnInteger; // prefix ptr-
int* pAnInteger; // prefix p- (shorthand)
int* anIntegerPtr; // suffix -Ptr
int* anIntegerP; // suffix -P (shorthand)

The general advice is to pick one of these conventions and use it consistently throughout
your code. Of the four shown, the p- shorthand prefix is probably the most common and
easiest to both type (with your keyboard) and read. This convention will be used for the
remainder of this book. So, when we see, say pDimension, we know immediately that it is
a variable that is a pointer. This will help us to correctly assign and access it.

Using Pointers Chapter 13

[260]

Assigning pointer values (addresses)
As with all other variables, a pointer has no meaningful value until one is assigned to it.
Any variable declaration merely states what value the variable is capable of holding. We
must assign a meaningful value to the pointer.

A pointer variable holds the address of another named location. This is the target of the
pointer. A pointer points to another variable's location. That variable's value is its target.
The way to assign an address value to a pointer is to use the & operator and the variable
identifier, as follows:

int height;
int* pDimension;

pDimension = &height;

This assigns the address of the height named location to the pDimension pointer variable.
As we previously mentioned, we don't care about the specific value of &height. But now,
we know that pDimension points to the same memory location as height. Another way to
express this is that height is the current target of pDimension.

We'll explore how to use this a bit more in the next section.

Operations with pointers
At this point, the only operations that work reasonably with pointers are the following:

Assignment
Accessing pointer targets
Limited pointer arithmetic
The comparison of pointers

We will explore each of these in turn. As we do, we must also consider the NULL special
pointer value (the zeroth address), or null pointer, and the void * special, unspecified
pointer type, or void pointer type.

Using Pointers Chapter 13

[261]

Assigning pointer values
We have just seen how to assign an address to a pointer variable by using another
variable's named location, as follows:

int height;
int width;
int length
int* pDimension;

pDimension = &height;

A diagram of the memory layout for these declarations is given in the Accessing pointer
targets section.

We could later reassign pDimension, as follows:

pDimension = &width;

This assigns the address of width to the pDimension variable. width and *pDimension
are now the same memory address. The target of pDimension is now width.

Each time we assign an address to pDimension, it is the address of an already-defined
variable identifier, as follows:

pDimension = &height;
 // Do something.
pDimension = &width;
 // Do something else.
pDimension = &length;
 // Do something more.

pDimension = &height;

First, we make height the target of pDimension, then width, then length. Finally, we set
height to again be the target of pDimension.

Using Pointers Chapter 13

[262]

Differentiating between the NULL pointer and
void*
A pointer variable should always have an assigned value. Its value should never be
unknown. However, there are times when a proper address cannot be assigned or the
desired address is currently unknown. For these instances, there is a constant NULL pointer.
This value is defined in stddef.h and represents a value of 0. It is defined as follows:

#define NULL ((void*)0)

Here, (void*) specifies a pointer to the void type. The void type represents no type—a
type that is unknown or a non-existent value. You cannot assign a variable to have
the void type, but a function can return void (nothing). As we have already seen, functions
with the void return type don't return anything.

Understanding the void* type
There are times when the type of a pointer is not known. This occurs primarily in C library
functions.

For this reason, the void* pointer type represents a generic, as yet unspecified pointer; in
other words, a pointer whose type is not known at declaration. Any pointer type can be
assigned to a pointer variable of the void* type. However, before that pointer variable can
be accessed, the type of the data being accessed must be specified through the use of a
casting operation:

void* aPtr = NULL; // we don't yet know what it points to.
...
aPtr = &height; // it has the address of height, but no type yet.
...
int h = (int)*aPtr; // with casting, we can now go to that address
 // and fetch an integer value.

In the first statement of the preceding code block, we see how aPtr is declared as a pointer
but we don't yet know it's type or what it points to. In the next statement, aPtr is given the
address of height, but we still don't know the type of the thing that aPtr points to. You
might think that the type could be inferred from the named variable, but C is not that
smart; in other words, the compiler does not keep that kind of information about variables
around for use at runtime. In the last statement, we provide the (int) type when we use
the pointer address to fetch a value at that address by casting aPtr to an int value. Casting
tells the compiler exactly how many bytes to fetch and exactly how to interpret those bytes.
We will explore these concepts in more detail in the next section.

Using Pointers Chapter 13

[263]

Coming back to NULL, we see that 0—by default, interpreted as an integer—is cast to the
generic pointer type. So, the 0 integer is cast as a pointer to the 0 byte address and is named
NULL. There is no value at address 0 ever. So, NULL becomes a useful way to set a pointer to
a known value but an inconsequential and unusable target.

We can then assign NULL to any pointer, as follows:

int* pDimension = NULL;
...
pDimension = &height;
...
pDimenions = NULL;

First, pDimension is both declared as a pointer to an integer and initialized to NULL.
Then, pDimension is given the address of height. Finally, pDimension is reset to NULL.

The reason for doing this will become obvious when we explore the comparison of pointer
values.

Accessing pointer targets
A pointer must know the type of the value it points to so that it can correctly get the correct
number of bytes for that value. Without an associated type, pointer access would not know
how many bytes to use when returning a value. For example, an int value is 4 bytes. An
integer pointer (8 bytes) would then go to its address and get 4 bytes to return an int value
in the correct range.

To access a value indirectly via a pointer variable, we must dereference the pointer. That is
to say, we must use the address stored in the pointer variable to go get the value it points
to; or, we go to its target. To assign a value to the pointer's target, we use the * operator, as
follows:

int height;
...
int* pDimension = &height;
...
height = 10;
...
*pDimension = 15;

Using Pointers Chapter 13

[264]

height is assigned a value of 10 directly through that variable identifier. In the next
statement, 15 is assigned to the target of pDimension. Because pDimension points to
height, height now has a value of 15 via *pDimension. height and *pDimension are
the same memory location referenced in two different ways.

Note that the * operator is used in both the pointer declaration and in pointer
dereferencing.

Pointer dereferencing can also be used to access values, as follows:

pDimension = &height;
int aMeasure;
...
aMeasure = height;
...
aMeasure = *pDimension;

Here, the value at the height direct variable and the pDimension indirect variable is
accessed (retrieved) in two identical ways. In the first way, aMeasure is assigned the value
directly from height. Or, more precisely, the following occurs:

height evaluates to the value at its fixed location.1.
The value is assigned to aMeasure.2.

In the second way, because pDimension points to height—in other words, height is the
target of pDimension—the following occurs:

*pDimension evaluates its target—in this case, height.1.
The target (height) evaluates to the value of that target.2.
The value is assigned to aMeasure.3.

Let's illustrate direct and indirect access using pointers with a simple program.

In order to print out the addresses and target values that pDimension will hold, we have to
fiddle a bit with both the printf() format specifiers and also use casting, (unsigned
long), to coerce pDimension into a printable address:

#include <stdio.h>
int main(void)
{
 int height = 10;
 int width = 20;
 int length = 40;
 int* pDimension;

Using Pointers Chapter 13

[265]

 printf(" sizeof(int) = %2lu\n" , sizeof(int));
 printf(" sizeof(int*) = %2lu\n" , sizeof(int*));
 printf(" [height, width, length] = [%2d,%2d,%2d]\n\n" ,
 height , width , length);
 printf(" address of pDimension = %#lx\n" ,
 (unsigned long)&pDimension);

 pDimension = &height;
 printf(" address of height = %#lx, value at address = %2d\n" ,
 (unsigned long)pDimension , *pDimension);
 pDimension = &width;
 printf(" address of width = %#lx, value at address = %2d\n" ,
 (unsigned long)pDimension , *pDimension);
 pDimension = &length;
 printf(" address of length = %#lx, value at address = %2d\n" ,
 (unsigned long)pDimension , *pDimension);
}

Using your program editor, create a new file called pointers1.c and type in the
preceding program. Pay particular attention to the printf() format specifiers. Also, notice
how we use casting to coerce the address contained in the pDimension variable into a
value that printf() will output.

In this program, the %2lu format specifier prints out two digits of an unsigned long value
since that is the type of value that sizeof() returns. To print an address in hexadecimal
format, we use the %#lx format specifier, which prints a long hexadecimal value prepended
with 0x to indicate that it's a hex value. Also, we have to coerce the pointer type of
pDimension into unsigned long with casting; otherwise, printf() complains about a
type mismatch.

Compile and run this program. You should see something like the following output:

Using Pointers Chapter 13

[266]

Each of the addresses printed is an 8-byte hexadecimal value. When you run this on your
system, your addresses will certainly be different. If you look very closely at the addresses
of the variables themselves, you may see something a bit unusual. The variables in our
program have been defined in one order in our program but have been allocated in a
different order in memory by the compiler. A diagram of memory looks something like
this:

In the preceding diagram, the memory addresses do not match the output given previously
because the picture was created at a different time with a different run of the program.
Also, the addresses shown are 32-bit hexadecimal values. My computer is a 64-bit
computer, so the addresses should include twice as many hex numbers for each address.
For brevity, I've omitted the high 32-bit values.

As you study this, pay attention to the relative positions of the variables in memory. Your
compiler may not order the variables in memory as mine has. Here, even
though pDimension was declared last, it appears as the lowest memory address. Likewise,
height, which was declared first, appears at a higher memory address. This is an
important consideration—we cannot foresee exactly how the compiler will order variables
in memory. It is for this reason that we must always use named memory locations
(variables). Even though we declare variables in one way, we cannot guarantee the
compiler will honor that order.

Using Pointers Chapter 13

[267]

As an experiment, see what happens when you use %d everywhere in place
of %2lu and %#lx when you compile your experiment (copy the program to another file
first, and then experiment on the copy).

Pointer arithmetic
Even though pointers are integers, only certain arithmetic operations are possible. Be aware
that adding values to pointers is not quite the same as adding values to integers. So, adding
1 to an integer value gives us the next integer value—for example, 9 + 1 = 10. However,
adding 1 to a pointer increases the pointer value by the value multiplied by the size of
bytes of the pointer's target type. Using the preceding picture, adding 1 to pDimension
actually adds 4 to the address of pDimension because 4 equals sizeof(int). So,
if pDimension = 0x328d2720, then pDimension + 1 = 0x328d2724.

Pointer arithmetic actually only makes sense in the context of arrays. We will discuss
pointer arithmetic in greater detail in Chapter 14, Understanding Arrays and Pointers.

Comparing pointers
As we stated earlier, we never concern ourselves about the specific value of a pointer.
However, we can carry out comparison operations on pointers for the following:

Is a pointer equal or not equal to NULL?
Is a pointer equal to or not equal to a named location?
Is one pointer equal or not equal to another pointer?

In each case, we can either check for equality (==) or inequality (!=). Because we can never
be certain of the variable ordering in memory, it makes no sense whatsoever to test whether
one pointer is greater than (>) or less than (<) another pointer.

If we consistently apply the guideline to always assign a value to a pointer, even if that
value is NULL, we can then make the following comparisons:

if(pDimension == NULL) printf("pDimension points to nothing!\n");

if(pDimension != NULL) printf("pDimension points to something!\n");

Using Pointers Chapter 13

[268]

The first comparison checks whether pDimension points to NULL, which implies it has not
yet been given a valid address or that it has been reset to NULL. The second comparison
checks whether pDimension has any other value than NULL. Note that this does not
necessarily mean pDimension has a valid address; it only means that it is not NULL. If
we've been consistent in always initializing or resetting our pointer to NULL, then we can be
a bit more certain that pDimension does have a valid address.

Both of the preceding comparisons can be shortened to the following:

if(!pDimension) printf("pDimension points to nothing!\n");

if(pDimension) printf("pDimension points to something!\n");

If pDimension has a non NULL value alone in a comparison expression, it will evaluate to
TRUE. If pDimension has a NULL value in a comparison expression, it will evaluate to
FALSE. This is not what we want in the first comparison since NULL will evaluate to 0 or
FALSE, so we have to apply the not operator (!) to switch the comparison evaluation to
match the condition we want.

Both comparison methods are commonly used. I prefer the more explicit form given in the
first example because the intention is very clear. In the second example, ! may be
overlooked or even misconstrued.

The comparisons of a pointer to a named location would look as follows:

if(pDimension == &height)
 printf("pDimension points to height.\n");

if(pDimension != &height)
 printf("pDimension does not point to height!\n");

The first comparison will evaluate to TRUE if pDimension points exactly to the address of
height. If pDimension has any other value, even NULL, it will evaluate to FALSE. The
second comparison will evaluate to FALSE if pDimension points exactly to the address of
height; otherwise, if pDimension has any other value, even NULL, it will evaluate to TRUE.

The comparisons of one pointer to another would look as follows:

int* pDim1 = NULL;
int* pDim2 = NULL;
...
pDim1 = &height;
pDim1 = pDim2;
...
pDim2 = & weight;

Using Pointers Chapter 13

[269]

...
if(pDim1 == pDim2)
 printf("pDim1 points to the same location as pDim2.\n");
...
if(pDim != pDim2)
 printf("pDim1 and pDim2 are different locations.\n");

We have now declared two pointers—pDim1 and pDim2—initializing them to NULL. Later
on, we make height the target of pDim1. Then, we give pDim2 the same target as pDim1.
At this point, both pointers have the same target.

Later, we assign weight as the target of pDim2. The first comparison will succeed if both
pDim1 and pDim2 have exactly the same target, or if both are NULL. The second comparison
will fail if both pDim1 and pDim2 have exactly the same target, or if both are NULL.

As an aside, when two pointers have the same target—in this case, height—we can assign
or access the value of height directly with height by dereferencing pDim1 or by
dereferencing pDim2. Each method changes the value at the height named location.

It is one thing to see C pointer syntax in code, but it is quite another to have a clear mental
vision of pointer operations in your mind's eye. With explicit verbalization, we can verbally
differentiate one pointer operation from another. So, let's explore how we talk about
pointer syntax.

Verbalizing pointer operations
In this chapter, we have seen a variety of ways to describe pointers, what they point to, and
how they are used. We will now turn our attention to how to verbalize various aspects of
pointers. If we can consistently and clearly talk about pointers to ourselves, then we'll have a
firmer grasp on how they operate and what we're actually doing with them.

Talking correctly leads to thinking clearly.

Using Pointers Chapter 13

[270]

The following table shows some actions that we might carry out with pointers, the C syntax
for each action (what we see in code), and, lastly, how to mentally verbalize that action:

Action Syntax Verbalization
Declare a pointer. int* pDim; pDim is a pointer to an integer.

Assign a named
location to a pointer.

pDim =
&height;

pDim has the address of height, pDim points to height,
or height is the target of pDim.

Access the target of a
pointer. *pDim

The value dereferenced by pDim, the target of pDim, the
value pDim points to, or the value at pDim.

Assign a value to the
location that the
pointer points to.

*pDim = 10;
The target of pDim is assigned a value of 10 or the value at
pDim is 10.

Access the value that
the pointer points to.

width =
*pDim;

width is assigned the value of the target of pDim, width is
assigned the value at pDim, or pDim is dereferenced and
assigned to width.

Compare pointers
for equality.

if(pDim1 ==
pDim2)

pDim1 and pDim2 have the same
target or pDim1 and pDim2 point to the same address.

Compare pointers
for inequality.

if(pDim1 !=
pDim2)

pDim1 and pDim2 have different targets.

Compare targets of
pointers.

if(*pDim1
== *pDim2)

The target of pDim1 is equal to the target of pDim2,
the dereferenced value of pDim1 is equal to
the dereferenced value of pDim2, or the value at pDim1 equals
the value at pDim2.

Verbalizing each of these in this manner may take some practice or simply consistent
repetition.

So, we have now covered the most basic mechanics of pointers—declaring them, assigning
them, accessing them, comparing them, and even talking about them. The examples given
have focused on these basic mechanics. You may have already come to the conclusion that
you would never need to use pointers in the manner that they have been shown. You
would be correct in drawing that conclusion. However, having covered these basic
mechanics, we are now ready to put pointers to good use.

For the remainder of this chapter, we'll look at how to use pointers as function parameters
and, subsequently, in the function body. After that, we'll expand on pointers to variables to
include pointers to structures and then use those in function parameters.

Using Pointers Chapter 13

[271]

Variable function arguments
As we saw in Chapter 2, Understanding Program Structure, function parameters in C are
call-by-value. In other words, when a function is defined to take parameters, the values the
function body receives through them are copies of the values given at the function call. The
following code copies the values of two values into function parameters so that the function
can use those values in its function body:

double RectPerimeter(double h , double w) {
 h += 10.0;
 w += 10.0;
 return 2*(w + h) ;
}

int main(void) {
 double height = 15.0;
 double width = 22.5;
 double perimeter = RectPerimeter(height , width);
}

In this simple example, the RectPerimeter() function takes two parameters—h and
w—and returns a value that is based on both of them—the perimeter of the rectangle. When
RectPerimeter() is called, the h and w function variables are created and the values of
height and width are assigned to them so that h has a copy of the value of height and w
has a copy of the value of width. In the function body, the values of h and w are modified
and then used to calculate the return value. When the function returns, h and w are
deallocated (or thrown away), but the values of height and width remain unchanged.

This is how call-by-value works. One advantage of call-by-value is that we can modify the
copies of values passed into the function and the original values remain unchanged. One
disadvantage of call-by-value is that for parameters that are very large arrays or very large
structures, this copying is significantly inefficient and may even cause the program to
crash.

But what if we wanted to change the values in the original variables?

We could contrive a structure to hold all three values, as well as copying in and then
copying back that structure. This would involve the following code:

typedef struct _RectDimensions {
 double height;
 double width;
 double perimeter;
} RectDimensions;

Using Pointers Chapter 13

[272]

RectDimensions RectPerimeter(RectDimensions rd) {
 rd.height += 10.0;
 rd.width += 10.0;
 rd.perimeter = 2*(rd.height*rd.width);
 return rd ;
}

int main(void) {
 RectDimensions rd;
 rd.height = 15.0;
 rd.width = 22.5;
 rd = RectPerimeter(rd);
}

However, that is quite cumbersome. It is also unnecessary. There is a better way of doing
this with pointers, which we will explore in the last section of this chapter, Using pointers to
structures.

Passing values by reference
If we wanted to change the values of parameters so that they are also changed after the
function returns, we can use pointers to do so. We would assign the address of the values
we want to modify to pointer variables and then pass the pointer variables into the
function. The addresses (which can't change anyway) will be copied into the function body
and we can dereference them to get the values we want. This is called passing by reference.
We would modify our program as follows:

double RectPerimeter(double* pH , double *pW)
{
 *pH += 10.0;
 *pW += 10.0;
 return 2*(*pW + *pH) ;
}

int main(void)
{
 double height = 15.0;
 double width = 22.5;
 double* pHeight = &height;
 double* pWidth = &width;
 double perimeter = RectPerimeter(pHeight , pWidth);
}

Using Pointers Chapter 13

[273]

The RectPerimeter() function now takes two pointers—pH and pW. When the function is
called, pH and pW are created and the values of pHeight and pWidth are assigned to each.
pH has the same target as pHeight; pW has the same target as pWidth. To use the desired
values, pointers are dereferenced and 10.0 is added to each. Here is an example where
the *pH += 10.0; shorthand comes in handy; recall that it is equivalent to *pH = *pH +
10.0;.

When the function call is complete, height now has the value 25.0 and width has the
value 32.5. You might want to verify this yourself with a similar program, but one that
prints out the values of height and width both before and after the function call in
main().

Any function that modifies values that exist outside of its function body is said to have side
effects. In this case, these side effects were intended. However, in many cases, side effects
may cause unanticipated consequences and so should be employed with careful intention
and caution.

Let's return to the earlier program that we looked at in this chapter that dealt with height,
width, and length. As you examine it, you might think that the printing part of the
program is quite messy, and there might be a way to create a cleaner solution. We can
create a function that takes two pointer parameters but does not have any side effects (the
pointer targets are not modified in the function body).

Copy the pointers1.c file into pointers2.c and modify it as follows:

Add the following two functions (after #include <stdio.h> and before int1.
main()):

void showInfo(int height, int width , int length) {
 printf(" sizeof(int) = %2lu\n" , sizeof(int));
 printf(" sizeof(int*) = %2lu\n" , sizeof(int*));
 printf(" [height, width, length] = [%2d,%2d,%2d]\n\n" ,
 height , width , length);
}

void showVariable(char* pId , int* pDim) {
 printf(" address of %s = %#lx, value at address = %2d\n" ,
 pId,
 (unsigned long)pDim ,
 *pDim);
}

Using Pointers Chapter 13

[274]

The body of our main() function should now look as follows:2.

 int height = 10;
 int width = 20;
 int length = 40;
 int* pDimension = NULL;
 char* pIdentifier = NULL

 printf("\nValues:\n\n");
 showInfo(height , width , length);
 printf(" address of pDimension = %#lx\n" ,
 (unsigned long)&pDimension);
 printf("\nUsing address of each named variables...\n\n");

 pIdentifier = "height";
 pDimension = &height;
 showVariable(pIdentifier , pDimension);
 pIdentifier = "width ";
 pDimension = &width;
 showVariable(pIdentifier , pDimension);
 pIdentifier = "length";
 pDimension = &length;
 showVariable(pIdentifier , pDimension);

So, we move the messy bits of printf() into showInfo() and showVariable().
showInfo() simply uses call-by-value for each of the variables we want to show. This is
what we did before.

The interesting part is making the two parameters to the showVariable() pointers—one a
pointer to char (the target of this will be a string name of the variable's identifier) and the
other a pointer to int (the target of this will be the value of the variable itself). At each call
to showVariable(), we provide a pointer to the variable's identifier and a pointer to the
variable's location. We will explore the relationship between pointers and strings in
Chapter 15, Working with Strings.

Using Pointers Chapter 13

[275]

Save, compile, and run this program. Your output should be exactly like that given before:

We can see both the sizes of int and a pointer to int, as well as the values stored at
the height, width, and length named locations. Next, we see both the addresses of each
variable and, to confirm the correctness of our pointers, we can see the values stored at
those addresses. They correctly correlate to the values in our named variables. Note how
each address is offset by 4 bytes; this, by no coincidence, is the size of int.

Passing addresses to functions without pointer
variables
We can actually go one step further and remove the pointer variables in main() and then
pass the desired addresses directly in each function call. We'll still need the pointer
variables as function parameters in the function definition, just not in the main() function
body.

Copy pointers2.c to pointers3.c and modify only the body of main(), as follows:

 int height = 10;
 int width = 20;
 int length = 40;
 printf("\nValues:\n\n");
 showInfo(height , width , length);
 printf("\nUsing address of each named variables...\n\n");
 showVariable("height" , &height);
 showVariable("width " , &width);
 showVariable("length" , &length);

Using Pointers Chapter 13

[276]

The showInfo() and showVariables() functions do not change. You'll also have to
remove the printf() statement that prints info about pDimension. Save, compile, and run
the program. As before, the output should be similar to earlier versions of this program,
except we no longer see information about pDimension since it now doesn't exist:

You may notice that the variable addresses have changed since we removed pDimension.
In this case, as you can see, they have not changed.

Pointers to pointers
If we can have a pointer that points to a variable, it should come as no surprise that we
have a pointer that points to another pointer, which then points to our desired variable.
This is called a double indirection. When using a pointer to a pointer to a variable, we
must doubly dereference our starting pointer to get to the desired value. Why might we
need to do that?

Consider the following snippet in pointers2.c:

 printf(" address of pDimension = %#lx\n" ,
 (unsigned long)&pDimension);

Now, you might have observed that we didn't move this code snippet into
the showInfo() function. That is because if we passed pDimension into the function as a
parameter, a new temporary variable would be created and the value of
pDimension would be copied into it. We would thus see the address of the function
variable, which would be different from the location of pDimension. We can move it
into showInfo(), but we will need to use a bit more trickery with pointers.

Using Pointers Chapter 13

[277]

To show the value of the pointer itself when we pass it into a function, we have to create a
pointer to the pointer. This is a pointer to a pointer to a named location; or, more precisely,
it is a pointer variable that points to another pointer variable that points to a variable.

Since this is a somewhat advanced topic, rather than going into more detail, we'll see how
this is done with an example. Copy pointers2.c into pointers4.c and make the
following modifications:

Change the showInfo() function definition. Your modifications to showInfo()1.
should look as follows:

 {
 printf(" sizeof(int) = %2lu\n" , sizeof(int));
 printf(" sizeof(int) = %2lu\n" , sizeof(int));
 printf(" [height, width, length] = [%2d,%2d,%2d]\n\n" ,
 height , width , length);
 printf(" address of pDimension = %#lx\n" ,
 (unsigned long)ppDim);
}

Change how showInfo() is called from main() function.2.
Remove the printf() statement for pDimension in main() function after the3.
call to showInfo(). The modifications to main() function should look as
follows:

 int* pDimension = NULL;
 int** ppDimension = &pDimension;
 char* pIdentifier = NULL;

 printf("\nValues:\n\n");
 showInfo(height , width , length , ppDimension);

Save, compile, and run pointers4.c. Your output should look identical to that of
pointers2.c:

Using Pointers Chapter 13

[278]

If this makes your head spin, don't worry. It has done the same to many C programmers,
just as it did to me. Double indirection is an advanced topic and is only included here for
future reference. We will only use double indirection sparingly in upcoming programs, if at
all.

Using pointers to structures
Before we finish with pointers, we need to expand the concept of a pointer pointing to a
variable of an intrinsic type to that of a pointer pointing to a structure. We can then also
expand typedef specifiers to structures to include typedef-defined pointers to structures.

Recall that a pointer points to the first byte of a target data type. We explored pointers to
intrinsic types in Chapter 3, Working with Basic Data Types. Also, recall that a structure is a
named location that holds a collection of named values. The structure as a whole is named,
as are each of the member elements of that structure.

Once the structure type is defined, variables may be declared that are of that type. When a
variable of any type is declared, the appropriate number of bytes are allocated in memory
to store the values of that type. We can then access the member's structure elements directly
via the structure variable's name and the . notation.

Declaring a pointer to a structure variable is no different than declaring a pointer to any
other variable. The variable must already have been declared (that is, allocated). The
pointer address is the first byte allocated to the structure, just as for any other variable.

Using Pointers Chapter 13

[279]

For this exploration, we'll use a Date structure type, representing the numerical day,
month, and year. It is defined as follows:

typedef struct {
 int day;
 int month;
 int year;
} Date;

We can then declare variables of that type, as follows:

Date anniversary;

We can then assign values to anniversary, as follows:

anniversary.month = 8;
anniversary.day = 18;
anniversary.year = 1990;

Now, we can declare a pointer to this structure variable, as follows:

Date* pAnniversary = &anniversary;

At this point, pAnniversary points to the structure variable as a whole, very much like
other variables. Unlike intrinsic variables, we are not just interested in the structure as a
whole; we are more interested in each of the structure variable's elements.

Accessing structures and their elements via
pointers
We access the structure as a whole as we did with intrinsic variables so that
*pAnniversary and anniversary refer to the same memory location.

To access one of the anniversary elements via the pointer, we might consider using
*pAnniversary.month. However, because the . operator has higher precedence than the
* operator, the element reference will fail evaluation and will be inaccessible. We can
change the evaluation order with parentheses, as follows:

(*pAnniversary).day <-- anniversary.day;
(*pAnniversary).month <-- anniversary.month;
(*pAnniversary).year <-- anniversary.year;

Using Pointers Chapter 13

[280]

Because accessing structure elements via pointers is quite common, an alternative syntax to
access structure elements via pointers is available. This is done using the --> operator and
appears as follows:

pAnniversary->day <-- (*pAnniversary).day;
pAnniversary->month <-- (*pAnniversary).month;
pAnniversary->year <-- (*pAnniversary).year;

The alternative syntax uses two fewer characters, a slight improvement. Whether you find
one method easier to read than the other, the general advice is to pick one and use it
consistently.

Using pointers to structures in functions
Now that we can use an indirect reference (a pointer) to a structure variable as easily as we
can with a direct reference (a variable identifier) to a structure variable, we can use the
indirect reference in function parameters to avoid the unnecessary copying of structures to
temporary function variables. We can use the structure pointer in function parameters, as
follows:

void printDate(Date* pDate);

We declare the pointer to the structure type in the function declaration. We then define the
function, accessing each element as follows:

void printDate(Date* pDate) {
 int m, d , y;
 m = pDate->month;
 d = pDate->day;
 y = pDate->year;
 printf("%4d-%2d-%2d\n" , y , m , d);

// or

 printf(%4d-%2d-%2d\n" , pDate->year , pDate->month , pDate->day);
}

In the definition of printDate(), we can create local variables and assign the dereferenced
pointer values to them, or we can just use the dereferenced pointer values without creating
and assigning temporary variables.

Using Pointers Chapter 13

[281]

We would then call printDate(), as follows:

Date anniversary = { 18 , 8 , 1990 };
Date* pAnniversary = &anniversary;

printDate(pAnniversary);

// or

printDate(&anniversary);

As we saw earlier, we can call printDate() using a pointer variable, pAnniversary, or
by using the &anniversary variable reference, without using a pointer variable.

Returning to the RectDimension structure shown in an earlier section of this chapter, we
can eliminate the need to copy the structure into the function and copy it back as a return
value by using a pointer, as follows:

typedef struct _RectDimensions {
 double height;
 double width;
 double perimeter;
} RectDimensions;

void CalculateRectPerimeter(RectDimensions* pRD) {
 pRD->height += 10.0;
 pRD->width += 10.0;
 pRD->perimeter = 2*(pRD->height * pRD->width);
}

int main(void) {
 RectDimensions rd;
 rd.height = 15.0;
 rd.width = 22.5;
 CalculateRectPerimeter(&rd);
}

In the main() function, rd is declared (allocated) and given initial values. A pointer to this
structure is then passed into the CalculateRectPerimeter() function, thereby making a
copy of the pointer value, not the structure, to be used in the function body. The pointer
value is then used to access and manipulate the structure referenced by the pointer.

Using Pointers Chapter 13

[282]

Summary
In this chapter, we learned how a pointer is a variable that points to or references a value at
a named location. To use a pointer, we have learned that we must know, either through
definition or through casting, the type of the pointer's target, as well as the address of the
target. Pointers should always be initialized to a named location or set to NULL. We have
explored the relatively few operations on pointers: assignment, access (dereference), and
comparison. We have also extended the idea of pointers to variables to include pointers to
structures and their elements. We have also seen how we can use pointers to provide
greater flexibility in passing and manipulating function parameters.

This chapter is essential to understanding the next chapter, Chapter 14, Understanding
Arrays and Pointers, where we will extend our concepts of using pointers to arrays. We will
see how to access and traverse arrays with pointers. Remember that an array is also
a named location that holds a collection of unnamed values, all of the same type. The array
as a whole has an identifier, but each of its elements are unnamed; they are relative to the
array's name plus an offset. As we will see, these array concepts dovetail nicely with and
extend our existing concepts of pointers.

14
Understanding Arrays and

Pointers
C pointers and arrays are closely related; so closely, in fact, that they are often
interchangeable! However, this does not mean pointers and arrays are identical. We will
explore this relationship and why we might want to use either array notation or pointer
notation to access array elements.

Having read two previous chapters, Chapter 11, Working with Arrays, and Chapter 13,
Using Pointers, is essential to understanding the concepts presented here. Please do not skip
those chapters before reading this one.

The following topics will be covered in this chapter:

Reviewing the memory layout of arrays
Understanding the relationship between array names and pointers
Using pointers in various ways to access and traverse arrays
Expanding the use of pointer arithmetic, specifically for array elements
Creating an array of pointers to arrays and a two-dimensional array to highlight
their differences

Understanding Arrays and Pointers Chapter 14

[284]

Technical requirements
Continue to use the tools you chose from the Technical requirements section of Chapter
1, Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Understanding array names and pointers
As we have seen, elements of arrays can always be accessed via indices and traversed by
means of an integer offset from the zeroth element. Sometimes, however, it is more
convenient to access array elements via a pointer equivalent.

Let's begin by declaring an array and two pointers, as follows:

const int arraySize = 5;
int array[5] = { 1 , 2 , 3 , 4 , 5 };
int* pArray1 = NULL;
int* pArray2 = NULL;

We have declared a contiguous block of arraySize, or 5, which are elements that are
integers. We don't use arraySize in the array declaration because the array cannot be
initialized as array in this way, even though arraySize is a constant. We have also
declared two pointers to integers—pArray1 and pArray2. In the memory on my system,
this looks something like the following:

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Understanding Arrays and Pointers Chapter 14

[285]

Remember that we can't control the ordering or location of variables, but we do know that
arrays are guaranteed to be contiguous blocks of values beginning at the array's name.

The name of the array represents the location or address of its zeroth element. This should
sound similar to pointers—in fact, it is. Without [and], the array name is treated just like
a pointer. It is better to think of the array name as a special variable location which is the
beginning of the array block. Because the array name alone is treated as a pointer, we can
do the following:

pArray1 = array;

The value of pArray1 is now the address of the zeroth element of array[].

We can also be more explicit when we assign the address of the zeroth element, as follows:

pArray2 = &array[0];

Here, the target of pArray2 is the zeroth element of array[]. To be even more explicit, we
could have written this with parentheses, as follows:

pArray2 = &(array[0]);

Each of these assignments is functionally identical.

Understanding Arrays and Pointers Chapter 14

[286]

Because of precedence rules, parentheses are not needed; the operator precedence of [] is
higher than & and is, therefore, evaluated first. array[0] evaluates to the specific array
element with an offset of 0. Notice how array is treated as a pointer, even though it is a
named location, but the array[0] array element is treated as a named location or a
variable that happens to be part of an array. Whenever [n] is given with the array name,
it is best to think of a specific element within an array.

Now, array, &array[0], pArray1, and pArray2 all point to exactly the same location. In
the memory on my system, this looks something like the following:

You may notice a bit of asymmetry here. pArray1 and pArray2 are the names of locations
of pointer values, whereas array is the name of the beginning location of an integer array.
This asymmetry vanishes when we think of the values of the pointer variables and the
array name itself as the beginning address of the block of integers. The values of the pointer
variables can change, but the address of the array name cannot. This will be clarified in the
next section.

Understanding Arrays and Pointers Chapter 14

[287]

Understanding array elements and pointers
Individual elements of an array can be accessed either with array notation or via pointers.

We have already seen how to access the elements of array using array notation—[and]:

array[0] = 1; // first element (zeroth offset)
array[1] = 2;
array[2] = 3;
array[3] = 4;
array[4] = 5; // fifth element (fourth offset)

These statements assign the 1..5 values to each element of our array, just as the single
initialization statement did when we declared array[5].

Accessing array elements via pointers
Arithmetic can be performed with addresses. Therefore, we can access the elements of
array using a pointer plus an offset, as follows:

*(pArray1 + 0) = 1; // first element (zeroth offset)
*(pArray1 + 1) = 2; // second element (first offset)
*(pArray1 + 2) = 3; // third element (second offset)
*(pArray1 + 3) = 4; // fourth element (third offset)
*(pArray1 + 4) = 5; // fifth element (fourth offset)

Since pArray is a pointer, the * go-to address of notation must be used to access the value
at the address of that pointer. In the second through fifth elements, we must first add an
offset value and then go to that computed address. Note that we must use (and) to
properly calculate the address before assigning the value there. Also, note that *(pArray1
+ 0) is identical to the abbreviated version, *pArray1.

You may have already noticed how adding an offset to a base address (pointer) is very
similar to using an array name and an index. Now, we can see how array element
referencing and pointer element referencing are equivalent, as follows:

 array[0] *(pArray1 + 0)
 array[1] *(pArray1 + 1)
 array[2] *(pArray1 + 2)
 array[3] *(pArray1 + 3)
 array[4] *(pArray1 + 4)

Understanding Arrays and Pointers Chapter 14

[288]

Notice how array is an unchanging address and pArray is also an unchanging address.
The address of array is fixed and cannot be changed. However, even though the value of
pArray can be changed—it is a variable, after all—in this example, the value of pArray is
not changed. The address of each element is evaluated as an intermediate value—the
unchanged value of pArray plus an offset. In the next section, we'll explore other ways of
traversing an array by changing the pointer's value directly.

Operations on arrays using pointers
Before this chapter, the only pointer operation we had used with arrays was assignment.
Because we can perform simple arithmetic on pointers—addition and subtraction—these
operations conveniently lend themselves to array traversal.

Using pointer arithmetic
An integer value in pointer arithmetic represents the element to which the pointer points.
When an integer is added to a pointer, the integer is automatically converted into the size of
the pointer element in bytes and added to the pointer. This is equivalent to incrementing an
array index. Put another way, incrementing a pointer is equivalent to incrementing the
index of an array.

Even though pointers are nearly identical to integers—they are positive, whole numbers
that can be added, subtracted, and compared—they are treated slightly differently from
integers when pointer arithmetic is performed. The following cases illustrate the various
results when operations on a pointer and an integer are mixed:

pointer + integer → pointer

integer + pointer → pointer

pointer – integer → pointer

pointer – pointer→ integer

Understanding Arrays and Pointers Chapter 14

[289]

When we add 1 to an integer variable, the value of the variable is increased by 1. However,
when we add 1 to a pointer variable, the value of the pointer is increased by the
sizeof() value of the type that the pointer points to. When a pointer points to, say, a
double value, and we increment the pointer by 1, we are adding 1 * sizeof(double),
or 8 bytes, to the pointer value to point to the next double value. When a pointer points to
a byte value and we increment the pointer by 1, we are adding 1 * sizeof(byte), or 1
byte.

We can use pointer arithmetic in one of two ways—either by keeping the pointer value
unchanged or by modifying the pointer value as we move through the array. In the first
approach, we access the elements of array using a pointer plus an offset. We have already
seen this in the previous section, as follows:

*(pArray1 + 0) = 1; // first element (zeroth offset)
*(pArray1 + 1) = 2; // second element (first offset)
*(pArray1 + 2) = 3; // third element (second offset)
*(pArray1 + 3) = 4; // fourth element (third offset)
*(pArray1 + 4) = 5; // fifth element (fourth offset)

Throughout these accesses, the value of pArray1 does not change. Note that we must use (
and) to properly calculate the address before accessing the value there. Also, note that
*(pArray1 + 0) is identical to the abbreviated form, *pArray1.

In the second approach, we access the elements of array by first incrementing the pointer
and then dereferencing the pointer value, as follows:

pArray1 = array;

 *pArray1 = 1; // first element (zeroth offset)
pArray +=1; *pArray1 = 2; // second element (first offset)
pArray +=1; *pArray1 = 3; // third element (second offset)
pArray +=1; *pArray1 = 4; // fourth element (third offset)
pArray +=1; *pArray1 = 5; // fifth element (fourth offset)

Understanding Arrays and Pointers Chapter 14

[290]

Because the increment of pArray is so closely associated with accessing its target, we have
placed two statements on the same line, separating them with the end-of-statement ;
character. This method is a bit tedious since we have added four incremental assignment
statements.

Using the increment operator
Alternatively, we could modify the pointer value to sequentially access each element of the
array using the increment operator. We can, therefore, eliminate the four extra incremental
assignment statements and make our code a bit more concise, as follows:

*pArray1++ = 1; // first element (zeroth offset)
*pArray1++ = 2; // second element (first offset)
*pArray1++ = 3; // third element (second offset)
*pArray1++ = 4; // fourth element (third offset)
*pArray1 = 5; // fifth element (fourth offset)

This is a very common C idiom that is used to access and increment the pointer in the same
statement. The * operator has equal precedence with the unary operator, ++. When two
operators have the same precedence, their order of evaluation is significant. In this case, the
order of evaluation is left to right, so *pArray is evaluated first and the target of the pointer
evaluation is then assigned a value. Because we use the ++ postfix, pArray is incremented
after the value of pArray is used in the statement. In each statement, the pointer reference
is accessed and then incremented to point to the next array element. Without the ()
precedence operations, we rely directly on C's precedence hierarchy.

Let's say we wanted to be a bit more obvious and chose to use the () grouping operator.
This grouping operator has higher precedence than both * and ++. What, then, would be
the difference between (*pArray)++ and *(pArray++)?

These provide two completely different outcomes. For (*pArray)++, *pArray is
dereferenced and its target is incremented. For *(pArray++), pArray is dereferenced,
accessing its target, and then pArray is incremented.

Let's now see how we'd use these array traversal techniques in loops:

#include <stdio.h>
int main(void) {
 const int arraySize = 5;
 int array[5] = { 1 , 2 , 3 , 4 , 5 };
 int* pArray1 = array;
 int* pArray2 = &(array[0]);
 printf("Pointer values (addresses) from initial assignments:\n\n");

Understanding Arrays and Pointers Chapter 14

[291]

 printf(" address of array = %#lx, value at array = %d\n" ,
 (unsigned long)array , *array);
 printf(" address of &array[0] = %#lx, value at array[0] = %d\n" ,
 (unsigned long)&array[0] , array[0]);
 printf(" address of pArray1 = %#lx, value at pArray1 = %#lx\n" ,
 (unsigned long)&pArray1 , (unsigned long)pArray1);
 printf(" address of pArray2 = %#lx, value at pArray2 = %#lx\n\n" ,
 (unsigned long)&pArray2 , (unsigned long)pArray2);

In this initial part of our program, we set up our array and create two pointers, both of
which point to the first element of the array. Even though the syntax of each statement is
slightly different, the end result is identical, as shown by the subsequent printf()
statements. The first printf() statement clearly shows how an array name is directly
interchangeable with a pointer. The remaining printf() statements show the addresses of
each pointer variable and the value contained in each pointer variable.

Throughout the remainder of the program, the array is traversed using three methods:

Array indexing
Pointer plus incremented offset
Pointer incrementation

Pay particular attention to the array indexing and pointer incrementation methods:

 printf("\n(1) Using array notation (index is incremented): \n\n");
 for(int i = 0; i < arraySize ; i++)
 printf(" &(array[%1d]) = %#lx, array[%1d] = %1d, i++\n",
 i , (unsigned long) &(array[i]), i , array[i]);

 printf("\n(2) Using a pointer addition (offset is incremented): \n\n");
 for(int i = 0 ; i < arraySize; i++)
 printf(" pArray2+%1d = %#lx, *(pArray2+%1d) = %1d, i++\n",
 i , (unsigned long)(pArray2+i) , i , *(pArray2+i));

 printf("\n(3) Using pointer referencing (pointer is incremented):\n\n");
 for(int i = 0 ; i < arraySize ; i++ , pArray1++)
 printf(" pArray1 = %#lx, *pArray1 = %1d, pArray1++\n",
 (unsigned long) pArray1 , *pArray1);
}

This program is formatted for brevity. Looking at it quickly may make you go a bit cross-
eyed. The version of this program in the repository is formatted a bit more clearly.

Understanding Arrays and Pointers Chapter 14

[292]

Let's clarify some of the printf() format statements. %1d is used to print a decimal value
constrained to a field of 1. It is critical to note here the subtle appearance of 1 (one) versus l
(ell). %#lx is used to print a long hexadecimal value preceded by 0x. Additionally, to get
the pointer value (an address) to print, it must be cast to (unsigned long). These format
options will be more completely explored in Chapter 19, Exploring Formatted Output.
Lastly, because each for()… loop contains only one statement—the printf()
statement—{ } is not needed for the for()… loop body.

Normally, this program would be formatted with whitespace to make each loop and
printf() parameters stand out a bit more clearly.

Create a new file called arrays_pointers.c. Type in the program and save your work.
Build and run the program. You should see the following output in your terminal window:

Understanding Arrays and Pointers Chapter 14

[293]

Once you have got the program working, as in the preceding screenshot, you should take
some time and experiment further with the program before moving on:

Try removing the () grouping operator in various places. For instance, remove
() from (pArray2+i) in the second loop. What happened to the pointer
address? Why?
Try removing the (unsigned long) casting operator in various places.
See what happens when you place ++ before the pointer or index (prefix
incrementation).
As an added challenge, try traversing the array in reverse order, beginning at the
last element of the array, and decrementing the offsets/indices in each of the
three methods. As you make these changes, note which method is easier to
manipulate. The repository has syarra_sretniop.c to show one way that this
can be done. However, this is just one example; your version may be very
different.

As you perform your experiments, pay attention to which method may be easier to modify,
clearer to read, or simpler to execute.

Passing arrays as function pointers revisited
We can now understand how array names and pointers to arrays are passed in function
arguments. If arrays were passed by values in a function parameter, the entire array might
then be copied into the function body. This is extremely inefficient, especially for very large
arrays. However, the array itself is not passed by a value; the reference to it is copied. That
reference is then used within the function to access array elements. This reference is
actually a pointer value—an address.

So, the array values themselves are not copied, only the address of the zeroth element. C
converts the array named location (without []) to a pointer value, &array[0], and uses
that to access array from within the function body.

Understanding Arrays and Pointers Chapter 14

[294]

Interchangeability of array names and pointers
The real power of being able to interchange an array name with a pointer is when we use
an array name (or a pointer to an array) as a parameter to be passed into a function. In this
section, we will explore the four possible ways of using an array in a function parameter:

Pass an array name in a parameter and then use array notation in the function.
Pass a pointer to an array in a parameter and then use the pointer in the function.
Pass an array name in a parameter and use that as a pointer in the function.
Pass a pointer to an array in a parameter and use array notation in the function.

The third and fourth methods should now come as no surprise to you. In
the arrays_pointers_funcs.c, program, we'll create the function prototypes for each of
the functions, set up a simple array that we want to traverse, print out some information
about the array's address, and then call each of the four functions in turn. For each function,
the intention is that the output will be identical to the others:

#include <stdio.h>

void traverse1(int size , int arr[]);
void traverse2(int size , int* pArr);
void traverse3(int size , int arr[]);
void traverse4(int size , int* pArr);

int main(void) {
 const int arraySize = 5;
 int array[5] = { 1 , 2 , 3 , 4 , 5 };

 printf("Pointer values (addresses) from initial assignments:\n\n");
 printf(" address of array = %#lx, value at array = %d\n" ,
 (unsigned long)array , *array);
 printf(" address of &array[0] = %#lx, value at array[0] = %d\n" ,
 (unsigned long)&array[0] , array[0]);

 traverse1(arraySize , array);
 traverse2(arraySize , array);
 traverse3(arraySize , array);
 traverse4(arraySize , array);
}

Understanding Arrays and Pointers Chapter 14

[295]

This is very similar to what we've already seen in the earlier program used in this chapter.
The one thing that might be surprising here is how the functions are all called in the same
way. Even though each of the four functions has a parameter that is of either the arr[] or
*pArr type, the value that is passed to each is array. You now know that array is both the
name of our array and, equivalently, a pointer to the first element of that array (the element
with the s zeroth offset).

The first traversal is pretty much what we've seen already. An array name is passed in and
array notation is used to print each value in a loop, as follows:

void traverse1(int size , int arr[]) {
 printf("\n(1) Function parameter is array, using array notation:\n\n");
 for(int i = 0; i < size ; i++)
 printf(" &(array[%1d]) = %#lx, array[%1d] = %1d, i++\n",
 i , (unsigned long)&(arr[i]), i , arr[i]);
}

In the second traversal, a pointer to the first element of the array is passed in. Again, using
a loop, the array is traversed using that pointer, as follows:

void traverse2(int size , int* pArr) {
 printf("\n(2) Function parameter is pointer, using pointer :\n\n");
 for(int i = 0 ; i < size ; i++ , pArr++)
 printf(" pArr = %#lx, *pArr = %1d, pArr++\n",
 (unsigned long)pArr , *pArr);
}

Notice the increment part of the for()… loop; using the , sequence operator, we see that i
is incremented, as well as pArr. This is often a useful idiom to keep all incrementation in
the increment expression of the for()… loop instead of putting the extra increment
operation in the for()… loop body.

In the third traversal, an array name is passed in, but because of the interchangeability of
arrays and pointers, we traverse the array using pointers. Again, incrementation of the
pointer is done in the increment expression of the for()… loop.

void traverse3(int size , int arr[]) {
 printf("\n(3) Function parameter is array, using pointer:\n\n");
 for(int i = 0 ; i < size ; i++ , arr++)
 printf(" arr = %#lx, *arr = %1d, arr++\n",
 (unsigned long)arr , *arr);
}

Understanding Arrays and Pointers Chapter 14

[296]

Finally, in the fourth traversal, a pointer to the first element of the array is passed in, and
because of the interchangeability of pointers and arrays, we traverse the array using array
notation with the pointer:

void traverse4(int size , int* pArr) {
 printf("\n(4) Function parameter is pointer, using array notation
:\n\n");
 for(int i = 0; i < size ; i++)
 printf(" &(pArr[%1d]) = %#lx, pArr[%1d] = %1d, i++\n",
 i , (unsigned long)&(pArr[i]) , i , pArr[i]);
}

Now, in your editor, create a new file called arrays_pointers_funcs.c, and type in the
five code segments given here. Save, compile, and run your program. You should see the
following output:

Understanding Arrays and Pointers Chapter 14

[297]

It should now be clear to you how array names and pointers are interchangeable. Use array
notation or pointer access in whichever manner makes your code clearer and is consistent
with the rest of your programs.

Introducing an array of pointers to arrays
Before finishing this chapter, it is worth introducing the concept of an array of pointers to
arrays. This may be thought of as an alternate two-dimensional array. Such an array is
somewhat different in memory than the standard arrays that we have so far encountered.
Even though its memory representation is different, we access this alternate array in exactly
the same way as we would a standard two-dimensional array. Therefore, some caution is
required when traversing the two kinds of arrays.

We declare a standard two-dimensional array in the following way:

int arrayStd[3][5];

We have allocated a contiguous and inseparable block of 15 integers, which has three rows
of five integers. Our conceptual memory picture of this is a single block referenced via a
single name, arrayStd, as follows:

To declare an alternate two-dimensional array using arrays of pointers, we would do the
following:

int* arrayPtr[3] = {NULL};
...
int array1[5];
int array2[5];
int array3[5];
arrayPtr[0] = array1;
arrayPtr[1] = array2;
arrayPtr[2] = array3;
...

Understanding Arrays and Pointers Chapter 14

[298]

We first declare an array of three pointers to integers, arrayPtr. As a reminder, when
working with pointers, it is always a good practice to initialize them to some known value
as soon as possible; in this case, when the array is declared. Later, we declare array1,
array2, and array3, each of which holds five integers. We'll call them sub-arrays for the
purposes of this discussion. Then, we assign the addresses of these arrays to arrayPtr. The
conceptual memory picture of this group of arrays is as follows:

This is a very different memory layout. We have, in fact, created four arrays—one array of
three pointers and three arrays of five integers each. Each array is a smaller, contiguous,
and inseparable block. However, because these array declarations are separate statements,
they are not necessarily all contiguous in memory. Each of the four arrays is a small
contiguous block but, taken as a whole, they are not. Furthermore, there is no guarantee
that they would all be contiguous, even though they've been declared consecutively.

Notice that there could be a lot of code in between the declaration of arrayPtr and the
sub-arrays. We have declared these sub-arrays statically; that is, their size and time of
declaration are known before the program runs. The other arrays could even be declared in
a different function block and at various times. Alternatively, we could declare the sub-
arrays dynamically, where their size and time of declaration is only known when the
program is running. We will explore static and dynamic memory allocation in Chapter 17,
Understanding Memory Allocation and Lifetime, and Chapter 18, Using Dynamic Memory
Allocation.

Using array notation, we would access the third element of the second row or sub-array
(remembering the one-offness of array offsets) as follows:

arrayStd[1][2];
arrayPtr[1][2];

Understanding Arrays and Pointers Chapter 14

[299]

Here is where things get interesting. Given that we have two very different in-memory
structures, one a single contiguous block and the other four smaller sub-blocks that are
scattered, access to any element in either of them is identical using array notation:

for(int i=0 ; i<3 ; i++)
 for(int j=0 ; j<5 ; j++)
 arrayStd[i][j] = (i*5) + j + 1;
 arrayPtr[i][j] = (i*5) + j + 1;
 }

That's great! However, if we use pointer arithmetic to traverse these arrays, we would need
to use slightly different approaches. We assign the value of (i*5) + j + 1 to each array
element. This calculation is significant; it shows the calculation the compiler makes to
convert index notation into an element's address.

To access the standard array using pointers, we could simply start at the beginning element
and iterate through the whole block because it is guaranteed to be contiguous, as follows:

int* pInteger = &(array[0][0]);
for(int i=0 ; i<3 ; i++)
 for(int j=0 ; j<5 ; j++)
 {
 *pInteger = (i*5) + j + 1;
 pInteger++;
 }

Because array is a two-dimensional array, we must get the address of the first element of
this block; using just the array name will cause a type error. In this iteration, on a standard
array using a pointer, i is used for each row and j is used for each column element. We
saw this in Chapter 12, Working with Multi-Dimensional Arrays.

To access the array of pointers to arrays, we must add an assignment to our iteration using
a pointer, as follows:

for(int i=0 ; i<3 ; i++)
{
 int* pInteger = arrayOfPtrs[i];

 for(int j=0 ; j<5 ; j++)
 {
 *pInteger = (i*5) + j + 1;
 pInteger++;
}

Understanding Arrays and Pointers Chapter 14

[300]

Because array1, array2, and array3 have been declared in separate statements, we
cannot be certain that they are actually adjacent to one another. This means that taken
together, they are unlikely to be contiguous across all of them. Therefore, for each sub-
array, we have to set the pointer to that beginning element and traverse the sub-array. Take
note that this particular pointer traversal relies on the fact that we have declared each sub-
array to be the same size.

Let's put this into a working program to verify our understanding. In this program, we'll
declare these arrays, assigning them values at the declaration, then traverse each with array
notation and with pointers. The goal of the program is to show identical output for each
traversal, as follows:

#include <stdio.h>

int main(void) {
 // Set everything up.
 // Standard 2D array.
 int arrayStd[3][5] = { { 11 , 12 , 13 , 14 , 15 } ,
 { 21 , 22 , 23 , 24 , 25 } ,
 { 31 , 32 , 33 , 34 , 35 } };
 // Array of pointers.
 int* arrayPtr[3] = { NULL };
 // Array sizes and pointer for pointer traversal.
 const int rows = 3;
 const int cols = 5;
 int* pInteger;
 // Sub-arrays.
 int array1[5] = { 11 , 12 , 13 , 14 , 15 };
 int array2[5] = { 21 , 22 , 23 , 24 , 25 };
 int array3[5] = { 31 , 32 , 33 , 34 , 35 };
 arrayPtr[0] = array1;
 arrayPtr[1] = array2;
 arrayPtr[2] = array3;

Both arrayStd and the sub-arrays are initialized upon array declaration. You can see that
each row and its corresponding sub-array have the same values. Some other useful
constants and a pointer variable are declared. These will be used in the traversals. First,
we'll carry out the traversals of the two arrays using array notation. The array notation is
the same for both:

 // Do traversals.

 printf("Print both arrays using array notation, array[i][j].\n\n");

 for(int i = 0 ; i < rows ; i++) {
 for(int j = 0 ; j < cols ; j++) {

Understanding Arrays and Pointers Chapter 14

[301]

 printf(" %2d" , arrayStd[i][j]);
 }
 printf("\n");
 }
 printf("\n");
 for(int i = 0 ; i < rows ; i++) {
 for(int j = 0 ; j < cols ; j++) {
 printf(" %2d" , arrayPtr[i][j]);
 }
 printf("\n");
 }
 printf("\n");

Then, we'll carry out the traversals using the temporary pointer we've already declared:

 printf("Print both arrays using pointers, *pInteger++.\n\n");

 pInteger = &(arrayStd[0][0]);
 for(int i = 0 ; i < rows ; i++) {
 for(int j = 0 ; j < cols ; j++) {
 printf(" %2d" , *pInteger++);
 }
 printf("\n");
 }
 printf("\n");

 // Experiment:
 // This is here if you comment out "pInteger = arrayPtr[j];",
 // below.
 // Otherwise, pInteger is reassigned with that statement
 // and this one has no effect.
 pInteger = arrayPtr[0];
 for(int i = 0 ; i < rows ; i++) {
 pInteger = arrayPtr[i]; // Get the pointer to the
 // correct sub-array.
 for(int j = 0 ; j < cols ; j++) {
 printf(" %2d" , *pInteger++);
 }
 printf("\n");
 }
 printf("\n");
}

Understanding Arrays and Pointers Chapter 14

[302]

In the traversal for arrayStd, the pointer is set to the first element and we use nested loops
to iterate through each row and column, incrementing the pointer as we go. In the traversal
for arrayPtr, note the added assignment that is needed for each row. This is the statement:

pInteger = arrayPtr[i];

The code snippet has an experiment to prove how arrayPtr is not a contiguous block.
After you get the program working as intended, then you can perform the experiment to
see what happens.

With your editor, create a program named arrayOfPointers.c and enter the three code
segments given. Save the file, compile it, and run it. You should get the following output:

As you can easily see, each array traversal presents an identical output. Yay! Success.

When you perform the experiment outlined in the last array traversal, you should see
something like the following output:

Understanding Arrays and Pointers Chapter 14

[303]

Yay! This was also a success because we can clearly see what happens when pointers go
awry. From this, we can conclude that using a pointer to traverse an array of pointers to
sub-arrays is definitely not like using a pointer to traverse a two-dimensional array. We get
unexpected, odd values in the last two rows because printf() is interpreting the bytes
that are not in those two sub-arrays. This also illustrates how we can access values outside
of array bounds and that we will get bizarre results when we do—hence, test and verify.
You know exactly why this has been emphasized!

However, there are numerous advantages to this alternative array of sub-arrays, especially
when each of the rows of the sub-arrays is not the same number of elements. Therefore, this
is an important concept to master. We will reuse and expand on this concept in Chapter
15, Working with Strings, Chapter 18, Using Dynamic Memory Allocation, and Chapter
20, Getting Input from the Command Line.

Understanding Arrays and Pointers Chapter 14

[304]

Summary
In this chapter, we used the concepts introduced in two earlier chapters, Chapter
11, Working with Arrays, and Chapter 13, Using Pointers, to learn how array names and
pointers are related and interchangeable.

We have seen various memory layouts of arrays and pointers and used pointers in various
ways to access and traverse arrays, both directly and via function parameters. We also have
seen how pointer arithmetic pertains to elements of the array and is a bit different to integer
arithmetic. We learned about some of the similarities and differences between a two-
dimensional array (a contiguous block of elements) and an array of pointers to sub-arrays
(a collection of scattered arrays indexed by a single array of pointers). Finally, we looked at
a set of simple programs that illustrate as well as prove the concepts we have learned.

Having explored arrays and pointers and their interrelationship, we are now ready to put
all of these concepts to good use in the next chapter.

15
Working with Strings

In C, a string is an array with two special properties. First, a string is made up of only
characters. Second, the string must conclude with an essential terminating character—the
null character. While some would say strings are one of C's weakest features, I disagree
with that assessment. Because strings build on already-established mechanisms, I believe
that they are rather elegant in an unexpected way.

Not all values that we might want to manipulate in a program are numbers. Often, we need
to manipulate words, phrases, and sentences; these are built from strings of characters. We
have been performing output using simple strings in printf() statements. In order to
perform the input of strings and numbers, we need to be able to further manipulate strings
to convert them into values. In this chapter, the elements and building blocks of C strings
will be explored, as well as various ways to use and manipulate C strings.

Chapter 11, Working with Arrays, Chapter 13, Using Pointers, and Chapter 14,
Understanding Arrays and Pointers, are essential to understanding the concepts presented
here. Please do not skip those chapters, particularly Chapter 14, Understanding Arrays and
Pointers, before reading this one.

The following topics will be covered in this chapter:

Characters – the building blocks of strings
Exploring C strings
Understanding the strengths and weaknesses of C strings
Declaring and initializing a string
Creating and using an array of strings
Using the standard library for common operations on strings
Preventing some pitfalls of strings – safer string operations

Throughout this chapter, we will introduce the programming technique of iterative
program development. We will start with a very simple but small program and repeatedly
add capabilities to it until we reach our desired complete result.

Working with Strings Chapter 15

[306]

Technical requirements
Continue to use the tools you chose from the Technical requirements section of Chapter 1,
Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Characters – the building blocks of strings
In C, each array element in a string is a character from a character set. In fact, the C
character set, also called American Standard Code for Information Interchange (ASCII), is
made up of printable characters—those that appear on the screen—and control characters.

Control characters allow digital devices to communicate, control the flow of data between
devices, and control the flow data layout and spacing. The following control characters
alter how characters are displayed, providing simple character-positioning functions:

Horizontal tab (moves the position forward by a number of spaces on the same
line)
Vertical tab (moves the position to the next line but keeps the current horizontal
position)
Carriage return (returns the position to the first column)
Line feed (advances to the next line)
Form feed (advances to the next page)
Backspace (moves back one space)

One special control character is NUL, which has a value of 0. This is known as the null
character, or '\0'. It is this special character value that terminates a properly formed C
string. Omitting this character will cause the C string to be formed improperly.

The other control characters have to do with communication between devices. Others serve
as data separators for blocks of data from large blocks (files) down to records and, finally,
units.

Printable characters are those that appear on the screen or can be printed. These include
numerals, upper and lowercase letters, and punctuation marks. Whitespace, or characters
that print nothing but alter the position of other characters, consists of the space character
and a positioning control character.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Working with Strings Chapter 15

[307]

The C language requires the following characters:

The 52 Latin upper and lowercase letters: A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z and
a b c d e f g h i j k l m n o p q r s t u v w x y z

The 10 digits: 0 1 2 3 4 5 6 7 8 9
Whitespace characters: SPACE, horizontal tab (HT), vertical tab (VT), form feed
(FF), line feed (LF), and carriage return (CR)
The NUL character
The bell (BEL), escape (ESC), backspace (BS), and delete (DEL) characters are
sometimes called destructive backspace.
32 graphic characters: ! # % ^ & * () - + = ~ [] " ' and _ | \ ; :
{ } , . < > / ? $ @ `

Any character set is a somewhat arbitrary correlation of values to characters. There have
been many different character sets in use since the invention of computers. Many computer
system manufacturers had their own character sets; or, if they were not completely unique,
they extended standard character sets in non-standard ways. Any of these extended
character sets were extended differently than any others and would, therefore, be unique.
Before computers, older teleprinters used the first standard digital code invented in 1870.
Before teleprinters, the telegraph, invented in 1833, used various non-digital coding
systems. Thankfully, there are now only a few character sets in common use today. ASCII,
as a subset of Unicode Transformation Format 8-Bit (UTF-8), is one of them.

A character set could be ordered in nearly any fashion. However, it makes sense to order a
character set in a manner that makes using and manipulating characters in that set
convenient. We will see how this is done with the ASCII character set in the next section.

The char type and ASCII
ASCII was based on older standards and was developed around the same time that C was
invented. It consists of 128 character values, which can be represented with a single signed
char value. The lowest valid ASCII value is 0 and the highest valid ASCII value is 127
(there's that off-by-one thing again that we first saw in Chapter 7, Exploring Loops and
Iteration). Each value in this range has a single, specific character meaning.

When we talk specifically about a C character (such as a control character, a digit, an
uppercase letter, a lowercase letter, or punctuation), we are really talking about a single
byte value that is correlated to a specific position in the character set.

Working with Strings Chapter 15

[308]

Any unsigned char property that has a value greater than 127 or any signed char
property that has a value that is less than 0 is not a valid ASCII character. It may be some
other kind of character, possibly part of a non-standard ASCII extension or a Unicode
character, but it is not valid ASCII.

In ASCII, there are four groupings of characters. Each group has 32 characters, with a total
of 128 characters in the set. They are grouped as follows:

0-31: Control characters
32-63: Punctuation and numerals
64-95: Uppercase letters and additional punctuation
96-127: Lowercase letters, additional punctuation, and delete (DEL)

Observe each of the four column groups in the following ASCII table:

Working with Strings Chapter 15

[309]

We will fully develop a program to output this table later in this chapter. Before we create
that program, let's look through the table for a moment.

Group 1 consists of control characters. This group has five columns that show the
following:

Column 1 is the mnemonic symbol for each control key.
Column 2 shows its printf() format sequence, if it has one (some don't).
Column 3 shows its keyboard equivalent, where ^ represents the Ctrl key on the
keyboard, which is pressed simultaneously with the given character key.
Column 4 shows the control key value in decimal form (base-10).
Column 5 shows the control key value in hexadecimal form (base-16).

Be careful with control keys! If you attempt to type any of the ASCII control
characters into a terminal window, you may get unexpected and/or
surprising results. There is no reason to ever use them, except for in
programs that communicate with other devices. Please avoid the temptation
to do so.

A terminal window is a program that is designed to work exactly like a
hardware terminal device but without the hardware. Terminal devices, which
are now nearly extinct, consist of an input device—typically a keyboard—and
an output device—typically a CRT screen. A terminal used for both input and
output is sometimes called an I/O device. These were clunky, heavy pieces of
equipment that were connected to a central computer or mainframe. They
had no computing capability of their own and served only to input
commands and data via the keyboard and echo keyboard entries and the
results of commands via the CRT screen.

Note that the decimal and hexadecimal values are shown for each key. As a convention,
hexadecimal numbers are preceded by 0x to indicate that they are not decimal numbers.
Hexadecimal numbers are made up of digits 0–9 and a–f or A–F for a total of 16
hexadecimal digits.

While we have not focused on binary (base-2), octal (base-8), or hexadecimal (base-16)
number systems, this might be a good opportunity for you to familiarize yourself with the
hexadecimal format. In my experience, you encounter and use hexadecimal far more often
than you ever use octal or even binary. Compare the decimal value to its hexadecimal
equivalent.

Working with Strings Chapter 15

[310]

Each group has three columns that show the printable character, the value of the character
in decimal form (base-10), and the value of the character in hexadecimal form (base-16):

Group 2 consists of numerals and punctuation.
Group 3 consists of all uppercase letters and some punctuation.
Group 4 consists of all lowercase letters, some punctuation, and the delete (DEL)
character.

There are a few things to notice about the organization of this character set, which includes
the following:

All of the control characters but one are in the first 32 values. DEL appears as the
very last control character in the character set.
Printable characters have values from 32 to 126 (groups 2, 3, and 4).
The uppercase A character differs in value from the lowercase a character by 32,
as do all the upper and lowercase characters. This was done to make converting
characters between upper and lowercase simple. The bit pattern for any
uppercase letter and its lowercase equivalent differs by only a single bit.
Punctuation is mostly scattered about. While this may appear random, there is
some rationale to it, primarily for collating/sorting—certain punctuation marks
sort before digits, digits sort before uppercase letters, and lowercase letters sort
last.
Lastly, the entire character set uses only 7 bits of the 8-bit char data type. This is
intentional because ASCII dovetails directly into UTF-8 and Unicode. This means
that any single-byte character whose value is less than 127 (0 or greater) is an
ASCII character. Because of this, if a character (byte value) is outside of that
range, we can then test to see whether it is a part of a valid Unicode character.

It should come as no surprise that C requires the ASCII character set to fully represent
itself. Of course, C does not need all of the control characters in this character set.

Beyond ASCII – UTF-8 and Unicode
The greatest advantage of 7-bit ASCII is that each character in the character set for English
can be represented in a single byte. This makes storing text efficient and compact. The
greatest disadvantage of 7-bit ASCII is that it represents a character set that is only suitable
for English. ASCII can't properly represent other Romance languages based on the Roman
alphabet, such as French, Spanish, German, the Scandinavian languages, or the Eastern
European languages. For those, we must consider a more comprehensive character-
encoding method—Unicode.

Working with Strings Chapter 15

[311]

If we catalog all of the characters and ideograms for all of the languages on Earth—past and
present—we find that 1,112,064 code points are needed to represent all of them with unique
values. The term code point is used here instead of character because not all of the positions
in this enormous code set are characters; some are ideograms. To represent a code set (think
of a character set but much, much larger), we'll need to use 2-byte and 4-byte values for all
of the code points.

Unicode is an industry-standard encoding system that represents all of the world's writing
systems and consists of UTF-8 (1 byte), UTF-16 (2 bytes), UTF-32 (4 bytes), and several
other encodings. Unicode is also known as a Universal Coded Character Set (UCS). Out of
the enormity of Unicode, UTF-8 is the most widely used encoding. Since 2009, UTF-8 has
been the dominant encoding of any kind. UTF-8 is able to use one to four bytes to encode
the full 1,112,064 valid code points of Unicode.

The best thing about UTF-8 is that it is completely backward-compatible with 7-bit ASCII.
Because of this, UTF-8 is widely used (by around 95% of the World Wide Web, in fact).

When UTF-16 or UTF-32 code sets are used, each and every character in that code set is
either 2 bytes or 4 bytes, respectively. Another advantage of UTF-8 is that it provides a
mechanism to intermix 1-, 2-, 3-, and 4-byte code points. By doing so, only the bytes that are
needed for a code point are used, saving both storage space and memory space.

Covering programming in Unicode, UTF-16, UTF-32, wide characters, or any other
encoding is beyond the scope of this book. Before we can master more complex code sets in
C, we will focus primarily on the single-byte encoding of UTF-8 (ASCII). Where
appropriate, we'll point out where ASCII and Unicode can coexist. For now, our focus will
be on ASCII. The Appendix is where we will see Unicode provides some introductory
strategies and the C standard library routines for dealing with multibyte code sets.

Operations on characters
Even though characters are integer values, there are only a few meaningful things we want
to do with or to them. The first two things are declaration and assignment. Let's declare
some character variables with the following code:

 signed char aChar;
 char c1 , c2, c3 , c4;
 unsigned char aByte;

Working with Strings Chapter 15

[312]

In C, char is the intrinsic data type that is one byte (8 bits). aChar is a variable that holds a
signed value between -128 and 127 (inclusive). We explicitly use the signed keyword,
even though it is unnecessary. Next, we declare four single-byte variables, each also having
the -128 to 127 range. Variables are assumed to be signed unless explicitly specified as
unsigned. Finally, we declare an unsigned single-byte variable, aByte, which can hold a
value between 0 to 128.

We can also assign values at the declaration, as follows:

 signed char aChar = 'A';
 char c1 = 65 ;
 char c2 = 'a';
 char c3 = 97 ;
 char c4 = '7';
 unsigned char aByte = 7;

These declarations and assignments can be understood as follows:

First, aChar is declared and initialized with a character set value of A. This is1.
indicated by the ' and ' characters.
Next, c1 is assigned a literal integer value of 65. This value corresponds to the2.
character set value for 'A'. For reference, see the table provided earlier in this
chapter. Using 'A' is far easier than memorizing all the values of the ASCII table.
The C compiler converts the 'A' character into its character set value, 65.
Likewise, c2 is assigned the 'a' character value and c3 is assigned the 97 literal3.
integer value, which happens to correspond to the character set value for 'a'.
Finally, we examine the difference between the '7' character (seven) and the 74.
integer value. These are very different things in the character set. The character
set value for '7' is 55 while the literal 7 integer value corresponds to the BEL
control character. BEL will make the terminal make a simple beep sound. The
point of these two assignments is to highlight the difference between the character
7 ('7')and the literal value 7 (7).

To verify this behavior, let's prove it to ourselves. The following program makes the
preceding declarations and then calls showChar() for each variable:

#include <stdio.h>

void showChar(char ch);

int main(void) {
 signed char aChar = 'A';
 char c1 = 65 ;

Working with Strings Chapter 15

[313]

 char c2 = 'a';
 char c3 = 97 ;
 char c4 = '1';
 unsigned char aByte = 1;

 showChar(aChar);
 showChar(c1);
 showChar(c2);
 showChar(c3);
 showChar(c4);
 showChar(aByte);
}

The main() function simply declares and initializes six variables. The real work of the
program is in the showChar() function, which is shown as follows:

void showChar(char ch) {
 printf("ch = '%c' (%d) [%#x]\n" , ch , ch , ch);
}

The showChar() function takes char as its parameter and then prints out that value in
three different forms—%c prints the value as a character, %d prints the value as a decimal
number, and %x prints the value as a hexadecimal number. %x is modified with # to
prepend 0x to the output hexadecimal number; it now appears in the printf() format
specifier as %#x.

With your chosen editor, create a new file called showChar.c and enter the main() and
showChar() functions. Compile and run the program. You should see the following output
and you may hear a bell sound:

In the output, we see the character, its decimal value, and finally, its hex value.

Let's consider the showChar() function for Unicode compatibility. Currently, it takes char,
or a single byte value, as its input parameter. This function works for ASCII but it won't
work for multi-byte Unicode. Fortunately, this can be easily fixed to handle both ASCII and
Unicode by changing the type of the input parameter from char to int, as follows:

void showChar(int ch) ...

Working with Strings Chapter 15

[314]

When the input is a single byte (char), the function will coerce it to fill the 4-byte int
variable and printf() will then handle it as if it were a single-byte char variable. When
the input is a multi-byte Unicode character, it will also be coerced to fill the 4-byte int
variable and printf() will also handle it properly.

Getting information about characters
The next thing we might want to do to individual characters has to do with figuring out
what kind of character it is. Given a character from an input source, we may want to
determine one or more of the following properties of that character:

Is it a control character?
Is it whitespace? (that is, does it include SPACE, TAB, LF, CR, VT, or HT?)
Is it a digit or a letter?
Is it in uppercase or not?
Is it even ASCII?

Now, reflecting on the four groups of ASCII characters and how they are laid out, you
might consider how you would write functions to test these properties. For instance, to see
whether a character is a decimal digit, you could write the following:

bool isDigit(int c) {
 bool bDigit = false;
 if(c >= '0' && c <= '9')
 bDigit = true;
 return bDigit;
}

This function checks to see whether the value of the given character is greater than or equal
to the value of the '0' character and whether it is less than or equal to the value of the '9'
character. If it is, then this character is one of those digits, and true is returned. Otherwise,
it is not in that range and false is returned. As a mental exercise, you might want to think
through what the logic might be to check each of the preceding properties.

A function that checks for whitespace might look as follows:

bool isWhitespace(int c) {
 bool bSpace = false;
 switch(c) {
 case ' ': // space
 case '\t': // tab
 case '\n': // line feed

Working with Strings Chapter 15

[315]

 case '\v': // vertical tab
 case '\f': // form feed
 case '\r': // carriage return
 bSpace = true;
 break;
 default:
 bSpace = false;
 break;
 }
 return bSpace;
}

In the isWhiteSpace() function, a switch()… statement is used. Each case variable of
the switch()… statement compares the given character to one of the whitespace
characters. Even though some of the whitespace characters appear as if they are two
characters (a backslash (\) and a character), the backslash escapes from the standard
character meaning and indicates that the next character is a control character. If we wanted
to assign the backslash character, we'd have to do so as follows:

aChar = '\\' ; // Backslash character

Notice how this fallthrough mechanism of switch()… works—if any of the cases are true,
bSpace is set to true and then we break out of switch()…. Remember that it is a safe
practice to always provide a default: condition for any switch()… statement.

For a final set of operations on characters, we may want to convert an uppercase character
into a lowercase one or vice versa. Alternatively, we might want to convert a digit into its
internal numerical value. To convert an uppercase letter into a lowercase one, we'd first
check to see whether the character is an uppercase letter and if it is, add 32 to it; otherwise,
do nothing, as follows:

int toUpper(int c) {
 if(c >= 'A' && c <= 'Z') c += 32;
 return c;
]

To convert a lowercase character into uppercase, we'd likewise check to see whether it is a
lowercase character and if so, subtract 32 from it.

Working with Strings Chapter 15

[316]

To convert the character value of a digit to its numerical value, we add the following
function:

int digitToInt(int c) {
 int i = c;
 if(c >= '0' && c <= '9') i = c - '0';
 return i;
}

In digitToInt(), we first check to see that we have a digit. Then, we subtract the
character value of '0' from the given character. The result is the digit's numeric value.
Otherwise, the character is not a digit and we simply return the character value that was
given.

While it is possible and even tempting to create your own methods/functions to perform
these operations, many of them are already provided in the C Standard Library. For these,
we look to the ctypes.h, the C standard library header file. There, you will find handy
functions to perform character tests and conversions on a given character. The following
functions perform simple tests on the given character, c :

 int isalnum(int c); // alphabets or numbers
 int isalpha(int c); // alphabet only
 int isascii(int c); // in range of 0..127
 int iscntrl(int c); // in range 0..31 or 127
 int isdigit(int c); // number ('0'..'9')
 int islower(int c); // lower case alphabet
 int isnumber(int c); // number ('0'..'9')
 int isprint(int c); // printable character
 int ispunct(int c); // punctuation
 int isspace(int c); // space
 int isupper(int c); // upper case alphabet

These functions return 0 for FALSE and non-zero for TRUE. Note that the given character is
presented as an int variable because it may be a Unicode 1-, 2-, 3-, or 4-byte code point.
int allows the character, whether a single-byte or 4-byte character, to properly hold any of
those character values. Therefore, we can expect these functions to work with any UTF-8 or
Unicode characters.

Working with Strings Chapter 15

[317]

Manipulating characters
The following functions alter a given character:

 int digittoint(int c); // convert char to its number value
 int tolower(int c); // convert to lower case
 int toupper(int c); // convert to upper case

These functions return the changed character, or the original character if the conversion is
not necessary or not valid.

There are also other functions available in ctype.h. They have been omitted for simplicity.
Some deal with non-ASCII characters; others deal with eclectic groupings of characters. If
you are interested in learning more, you can explore ctype.h on your computer system.

We will see some of these functions in action later in this chapter after we introduce strings.
However, before we move on to strings, let's take a first pass at creating the ASCII table
shown earlier in this chapter. We will write a program that prints a single column of a table
of printable characters. The program is surprisingly simple. To start, our approach will be
to use a for()… loop to print a single grouping from the ASCII table. The basic loop is as
follows:

#include <stdio.h>

int main(void) {
 char c2;
 for(int i = 32 ; i < 64 ; i++) {
 c2 = i;
 printf("%c %3d %#x" , c2 , c2 ,c2);
 printf("\n");
 }
}

This loop prints the second group of ASCII characters in the range of 32 to 63—which is
punctuation and digits. The printf() statement does three things—first, it prints c2 as a
character with the %c format specifier, then it prints c2 as a decimal value with the %d
format specifier, and finally, it prints c2 as a hexadecimal, or hex, value with the %x format
specifier. # in this format specifier prepends the hex number with 0x; this convention
clearly tells us that it is a hex number.

Working with Strings Chapter 15

[318]

The concept of interpreting a value in different ways, as printf() does in this code
statement, should not be new. If you recall from Chapter 3, Working with Basic Data Types,
any value is simply a series of 0 and 1. The format specifiers embedded in the string
parameter to printf() tell the function how to interpret the given values. In this case, we
are printing the same value but in three different ways—as a character, as a decimal
number, and as a hex number.

Create a file called printASCII.c and open the program. Compile and run the program.
You should see the following output:

We have one column printed. This is our starting point. To get the full ASCII table, we will
modify this basic program several times until we get to our finished and complete ASCII
table.

Working with Strings Chapter 15

[319]

In the next iteration of printASCII.c, we want to add printing of groups 3 and 4 and add
column heading lines to indicate what each column represents:

The code for the heading lines look like this:1.

 printf("| Ch Dec Hex | Ch Dec Hex | Ch Dec Hex |\n");
 printf("|-------------|-------------|-------------|\n");

We use the vertical bar (|) as a visual guide to separate the groups. Each group
has a character, its decimal value, and its hex value.

Next, we need to add some character variables for each of the groups:2.

 char c1 , c2 , c3 , c4;

c1 will hold values for group 1 characters, c2 will hold values for group 2
characters, and so on. Note that we've added c1 for the group 1 control
characters, even though we will ignore this capability for now.

Next, we need to change the for()… loop to go from 0 to 31. By doing this, we3.
can simply add an offset to the character for the proper group, as follows:

 for(int i = 0 ; i < 32; i++) {
 c1 = i; // <-- Not used yet (a dummy assignment for now).
 c2 = i+32;
 c3 = i+64;
 c4 = i+96;

Lastly, the printf() statement needs to print the characters for each group on a4.
single line, as follows:

 printf("| %c %3d %#x | %c %3d %#x | %c %3d %#x |" ,
 c2 , c2 , c2 ,
 c3 , c3 , c3 ,
 c4 , c4 , c4);
 printf("\n");
 }

This may appear more complex than before, but it's really just the same format
sequence repeated three times, with variables to fill each format specifier.

Working with Strings Chapter 15

[320]

If you made those changes to your version of printASCII.c, you will see the following
output:

Not bad—but wait! There is that pesky DEL character that has a value of 127. How might
we deal with that?

Working with Strings Chapter 15

[321]

The easiest solution is to add an if()… statement that checks whether c4 is the DEL
character. If not, print the line out as before. If it is, then instead of printing c4 as a
character, which actually deletes a character on the terminal, print the "DEL" string instead.
The printf() format specifiers will need a slight change to reflect this, as follows:

printf("| %c %3d %#x | %c %3d %#x |%s %3d %#x |" ,
 c2 , c2 , c2 ,
 c3 , c3 , c3 ,
 "DEL" , c4 , c4);

Now, your printASCII.c program should look as follows:

#include <stdio.h>

int main(void) {
 char c1 , c2 , c3 , c4;
 printf("| Ch Dec Hex | Ch Dec Hex | Ch Dec Hex |\n");
 printf("|-------------|-------------|-------------|\n");
 for(int i = 0 ; i < 32; i++)
 {
 c1 = i; // <-- Not used yet (a dummy assignment for now).
 c2 = i+32;
 c3 = i+64;
 c4 = i+96;

 if(c4 == 127) {
 printf("| %c %3d %#x | %c %3d %#x |%s %3d %#x |" ,
 c2 , c2 , c2 ,
 c3 , c3 , c3 ,
 "DEL" , c4 , c4);
 } else {
 printf("| %c %3d %#x | %c %3d %#x | %c %3d %#x |" ,
 c2 , c2 , c2 ,
 c3 , c3 , c3 ,
 c4 , c4 , c4);
 }
 printf("\n");
 }
}

You might notice that each part of the if()… else… statement consists of only one
statement. Nevertheless, even though the { and } block statements are not necessary since
the logic is currently very simple, they are there for if or when this logic is altered and
becomes more complicated. Also, notice how the spacing for each line clarifies what is
happening.

Working with Strings Chapter 15

[322]

Edit printASCII.c so that it looks like the preceding code. Compile and run it. You
should now see the following:

At this point, we have printed out the printable characters and their values and we have
dealt with the rather out-of-place "DEL" control character to properly appear in our table.
Before we can complete our ASCII table to print control characters without actually sending
those control characters to our terminal, we need to learn a bit more about strings.

Remember, printing control characters to a terminal window actually controls that
window's behavior as if it were a real terminal device. We don't want to do that without
understanding more about why we'd even need to control the device.

Working with Strings Chapter 15

[323]

Exploring C strings
We have explored individual characters and various operations on them. Dealing with
individual characters is useful but more often, we will want to create words and sentences
and operate on them. For this, we need a string of characters—or more simply, we need a
string.

An array with a terminator
A string is an array of characters with one special property. This special property is that the
element after the last character of the C string must itself be a special character—the NUL
character. NUL has a value of 0. This character indicates the end of the string.

To implement a string, we extend the concept of an array to be a specially formatted array
of characters; an array with an extra terminating NUL character. The terminating character is
sometimes called a sentinel. This is a character or condition that signals the end of a group
of items. The NUL character will be used as a sentinel when we loop through string
elements; the sentinel will indicate that we have encountered every element of the string.
Because of this, we must be careful to ensure that each string ends with NUL.

Where we use 'x' (single quotes) to indicate a single character, we use "Hello" (double
quotes) to indicate a string literal, which is constant and cannot be changed. When double
quotes are used to define a string, the null terminator is automatically added to and
included in the array of characters. This also means that the string array always has one
more element (for NUL) than the number of characters that are in the string. So, the "Hello"
string is an array of six elements (five printable characters and the NUL character).

Without the terminating NUL character, we either have just an array of characters or we
have an invalid string. In either case, we do not have a string. Furthermore, when we try to
use standard string operations on an invalid string, mayhem will result. Mayhem also
results when we loop through an array like this but the NUL sentinel is not present. For an
array to be a string, the NUL terminator must be present.

Strengths of C strings
One of the greatest strengths of C strings is that they are simple, in the sense that they are
built upon existing mechanisms—characters, arrays, and pointers. All of the considerations
we have for arrays, pointers to arrays, and pointers to array elements also apply to strings.
All of the ways we loop through arrays also apply to strings.

Working with Strings Chapter 15

[324]

Another strength of C strings is that the C standard library comes with a rich set of
functions with which to operate on strings. These functions make creating, copying,
appending, extracting, comparing, and searching strings relatively easy and consistent.

Weaknesses of C strings
Unfortunately, C strings also have some great weaknesses. The foremost of these is the
inconsistent application of the NUL terminator. Sometimes, the NUL terminator is
automatically added, but at other times, the responsibility of adding it is left to the
programmer. This inconsistency makes creating strings somewhat error-prone so that
special attention must be given to correctly forming a valid string with the terminating NUL
character.

A minor weakness of C strings is that they are not always efficient. To get the size of a
string, for instance, the entire string must be traversed to find its end. In fact, this is how the
strlen() function works; it traverses the entire string, counting each character before the
first '\0' character it encounters. Often, this traversal may be done multiple times. This
performance penalty is not quite as important on fast computing devices, but it remains a
concern for slower, simpler computing devices and embedded devices.

For the remainder of this chapter and all the subsequent chapters, we will continue to use C
strings so that you gain familiarity with using them. If, after working with C strings for
some time, you find them too cumbersome, or you find it too easy to misuse them, causing
instability in your programming projects, you may want to consider alternatives to C
strings. One alternative is The Better String Library—bstrlib. bstrlib is stable, well-
tested, and suitable for any software production environment. bstrlib is described briefly
in the Appendix section of this book.

Declaring and initializing a string
There are a number of ways to declare and initialize a string. We will explore the various
ways to both declare and initialize strings.

String declarations
We can declare a string in several ways. The first way is to declare a character array with a
specified size, as follows:

char aString[8];

Working with Strings Chapter 15

[325]

This creates an array of 8 elements, capable of holding seven characters (don't forget the
terminating NUL character).

The next way to declare a string is similar to the first method but instead, we don't specify
the size of the array, as follows:

char anotherString[];

This method is not useful unless we initialize anotherString, which we will see in the
next section. If you recall from Chapter 14, Understand Arrays and Pointers, this declaration
looks like a pointer in the form of an array declaration. In fact, without initialization, it is.

The last way to declare a string is to declare a pointer to char, as follows:

char * pString;

Again, this method not useful until pString is either initialized or actually points a string
literal or string array, both of which must have already been declared. The last two
methods, both without initialization, are useful as function parameter declarations to refer
to a string that has already been declared and initialized.

All of these methods are more useful when the string is both declared and initialized in the
same statement.

Initializing strings
When we declare and initialize a string array, there are a few more possibilities that must
be understood. We will explore them now:

We can declare an empty string—that is, a string with no printable1.
characters—as follows:

 char string0[8] = { 0 };

string0 is an array of 8 elements, all of which are initialized to NULL, the nul
character, or simply 0.

Next, we can declare a string and initialize the array with individual characters,2.
as follows:

 char string1[8] = { 'h' , 'e' , 'l' , 'l', 'o' , '\0' };

Working with Strings Chapter 15

[326]

When doing this, we must remember to add the nul character, or '\0'. Note that
even though the array is declared to have 8 elements, we have only initialized six
of them. This method is rather tedious.

Thankfully, the creators of C have given us an easier way to initialize a string, as3.
follows:

char string2[8] = "hello";

In this declaration, string2 is declared to have 8 elements and is initialized with
the "hello" string literal. Each character of the string literal is copied into the
corresponding array element, including the terminating nul character ('\0'). By
specifying an array size, we have to make certain that the array declaration is
large enough to hold all the characters (plus the nul character) of the string literal.
If we use an array size that is less than the length of the string literal (plus the nul
character), a compiler error will occur. This is also tedious.

The creators of C didn't stop there. Again, thankfully, they provided an easier4.
way to do this, as follows:

 char string3[] = "hello";

In this declaration, by giving string3 an unspecified size, we are telling the C
compiler to allocate exactly the number of characters (plus the nul character) that
is copied from the string literal, "hello". The string3 array now has six
elements, but we didn't have to count them beforehand.

In each of the preceding array initializations, each element/character of the array can be
accessed using the [] array notation or pointer traversal. Furthermore, each
element/character of the array can be changed. The methods for doing this are identical to
those shown in Chapter 14, Understanding Arrays and Pointers.

Declaring and initializing a character array of an unspecified size with a string literal is
very different than declaring a pointer to character and initializing that with the address of
that string literal. String literals—like literal numbers, say 593—are strings, but they cannot
be changed.

A pointer to character is declared and initialized with a string literal, as follows:

 char* string4 = "hello";

Working with Strings Chapter 15

[327]

string4 is a pointer that points to the first character of the "hello" string literal. No
characters are copied. string4 can later be reassigned to point to some other string literal
or string array. Furthermore, "hello" is a constant. So, while we can traverse this string,
accessing each character element, we cannot change any of them.

We can manipulate string elements (characters) in a string array, but not in a string literal,
in the same way that we would an array of any other data type. The following program
illustrates both initializing strings in various ways and then changing the first character of
each string:

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char string0[8] = { 0 };
 char string1[8] = { 'h' , 'e' , 'l' , 'l', 'o' , '\0' };
 char string2[8] = "hello";
 char string3[] = "hello";
 char* string4 = "hello";
 printf("A) 0:\"%s\" 1:\"%s\" 2:\"%s\" 3:\"%s\" 4:\"%s\"\n\n" ,
 string0 , string1 , string2 , string3 , string4);

 string0[0] = 'H';
 string1[0] = 'H';
 string2[0] = toupper(string2[0]);
 string3[0] = toupper(string3[0]);
// string4[0] = 'H'; // Can't do this because its a pointer
 // to a string literal (constant).
 char* string5 = "Hello"; // assign pointer to new string
 printf("B) 0:\"%s\" 1:\"%s\" 2:\"%s\" 3:\"%s\" 4:\"%s\"\n\n" ,
 string0 , string1 , string2 , string3 , string5);
}

Let's examine each part of this program, as follows:

First, the character arrays are declared and initialized. string0 is a string1.
containing no printable characters or an empty string; it is also an array of 8
elements, as are string1 and string2. These arrays are larger than they need to
be. string3 is an array of exactly the required size for the "hello" string, or, 6
elements (6, not 5—don't forget the terminating nul character). string4 is a
pointer to a string literal.
Next, these strings are printed using a single printf() function. To get a double2.
quote mark (") to appear in the output, \" is used in the format string before and
after each string specifier.

Working with Strings Chapter 15

[328]

Finally, the first letter of each string array is changed to its uppercase letter. The3.
first two strings are changed by assigning 'H' to that element. The next two
strings are changed using the toupper() standard library function.

Create the simpleStrings.c file and type in the preceding program. Save it, then compile
and run it. You should see the following output:

You can now use this program for further experimentation. For instance, what happens
when you try to change the first letter of string4? What happens when you try to initialize
string1 to, say, "Ladies and gentlemen" (a string much longer than 8)? You might
also try adding a loop by using strlen() or by checking for '\0' and converting each
character of string2 into uppercase. The strlen() function can be used by including
<string.h>, described in the last section of this chapter. Solutions to these experiments
can be found in the source file in the repository.

Passing a string to a function
Just as with arrays and pointers, there are a number of ways to pass a string to a function:

The first way is to pass the string explicitly, giving the array size of the string, as1.
follows:

Func1(char[8] aStr);

This parameter declaration allows a string of up to seven characters, as well as the
terminating nul character ('\0'), to be passed into Func1(). The compiler will
verify that the array being passed in has exactly 8 char elements. This is useful
when we are working with strings of limited size.

The next way is to pass the string without specifying the char array size, as2.
follows:

Func2(char[] aStr);
Func3(int size, char[] aStr);

Working with Strings Chapter 15

[329]

In Func2(), only the string name is passed. Here, we are depending on the fact
that there is '\0', a nul character in aStr. To be safer, the size of the string, as
well as the string itself, can be passed into the function, as is done in Func3().

Lastly, we can pass a pointer to the beginning of the string. The pointer may3.
point to either an array of characters or it may point to a string literal:

Func4(char* pStr);

If in any of the functions you need to ensure that the string is not modified, you4.
can use the const qualifier in any of the methods, as follows:

Func1_Immutable(const char[8] aStr);
Func2_Immutable(const char[] aStr);
Func3_Immutable(int size, const char[] aStr);
Func4_Immutable(const char* pStr);

Each of these function declarations indicates that the string characters passed into the body
of function definition cannot be modified.

Empty strings versus null strings
When a string contains no printable characters, it is called an empty string. The following
declarations are empty strings:

char* emptyString1[1] = { '\0' };
char* emptyString2[100] = { 0 };
char* emptyString3[8] = { '\0' , 'h' , 'e' , 'l' , 'l' , 'o' , '\0' } ;

The first empty string is a character array of a single element—the nul character, or '\0'.
The second empty string is a character array of 100 elements, all of which are '\0', the nul
characters. The third empty string is also an empty string; even though it has printable
characters, the nul character ('\0') in the zeroth element signifies the end of the string,
thereby making it empty. After the first nul character, '\0', is encountered, it doesn't
matter what comes after it; it is still seen as an empty string.

When an array reference or pointer to a string is null (nothing), it is called a null string. A
null string points to nothing at all. The following declarations are null strings:

char nullString1[];
char* pNullString2 = NULL;

Working with Strings Chapter 15

[330]

The first null string is an uninitialized character array declaration. The second null string is
a pointer to the character where the pointer value is NULL. pNullString2 will be a null
string until a valid string address is assigned to it.

An empty string and a null string are not the same! One is an array with at least one '\0',
the nul character; the other is nothing at all—nothing has been allocated or the null string
reference is NULL (points to nothing).

The distinction between an empty string and a null string is particularly important when
we create or use functions that expect a valid string (even if it is empty) but are given a null
string. Mayhem will occur. To avoid mayhem, when you create string functions, be sure to
check for the null string. When you use string functions, either verify a null string could be
passed to it or check for the null string before calling the function.

Hello, World! revisited
There is one final way to pass a string into a function, which is to pass a string literal as a
function parameter, as follows:

Func5("Passing a string literal");

In this function declaration, the "Passing a string literal" string literal is the string
that is passed into Func5() when it is called. Func5() can be declared in any of the
following ways:

void Func5(char[] aStr);
void Func5(char* aStr);
void Func5(const char[] aStr);
void Func5(const * aStr);

The first two declarations take a non-constant array name or pointer parameter, while the
last two declarations take a constant array name or pointer parameter. Because the
parameter string being passed into Func5() is a string literal, it remains a constant and its
elements cannot be changed within the function body.

This is another kind of initialization and it is rather subtle. However, we have already seen
this done many times. We first saw it in our very first program, Hello, World!, in
Chapter 1, Running Hello, World!, with the following statement:

printf("Hello, World!\n");

Working with Strings Chapter 15

[331]

Let's examine what is happening in this call to printf(). In this statement, the "Hello,
World!\n" string literal, as well as a pointer, is allocated. The pointer points to the first
character of this string and is passed into the function body. Within the function body, the
string is accessed like any other array (either via a pointer or using array notation).
However, in this case, each element of the array is constant—having been created from a
string literal—and cannot be changed. When the function returns, both the string literal and
the pointer to it are deallocated.

If we want to create a string and use it more than once or alter it before using it again, we
would have to declare and initialize it, as follows:

char greeting[] = "hello, world!";

We could then use it in printf(), as follows:

printf("%s\n" , greeting);

Then, perhaps, we might change it to all uppercase and print it again, as follows:

int i = 0;
while(greeting[i] != '\0') {
 greeting[i] = toupper(greeting[i]);
}
printf("%s\n" , greeting);

In these series of statements, we created a string and used it in multiple printf()
statements, modifying the string between calls. Create a file called greet.c and put the
previous statements in the main() function block. Remember to include ctype.h as well
as stdio.h so that you can use the toupper() function. Compile and run the program.
You should see the following output:

As you can see, first the greeting string of lowercase letters is printed. It is converted into
uppercase letters and then printed. Notice how only characters that can be converted into
uppercase are actually converted; the comma (,) and exclamation mark (!) remain
unchanged.

Also, notice how we could have found the length of the string and used a for()…
statement. However, because the string has a sentinel value, \0, which indicates the
endpoint, we can more easily use a while()… statement.

Working with Strings Chapter 15

[332]

Creating and using an array of strings
Sometimes, we need to create a table of related string values. This table, in one form or
another, is often called a lookup table. Once we construct this table, we can then look up
string values based on an index into the table. To declare a one-dimensional lookup table
for the days of the week, where the array index is equal to the day of the week, we would
make the following declaration:

char* weekdays[] = { "Sunday" ,
 "Monday" ,
 "Tuesday" ,
 "Wednesday" ,
 "Thursday" ,
 "Friday" ,
 "Saturday" };

Notice that the strings are of different sizes. Also, notice that they are all string literals; this
is acceptable because these names won't change. We can then use this table to convert a
numerical day of the week to print the day, as follows:

int dayOfWeek = 3;
printf("Today is a %s \n" , weekdays[dayOfWeek]);

A value of 3 for dayOfWeek will print the "Wednesday" string.

With a simple lookup table, we can create an array of string literals that represent the
mnemonics of control characters to complete our ASCII table. We can create our control
character lookup table as follows:

char* ctrl[] = { "NUL","SOH","STX","ETX","EOT","ENQ","ACK","BEL",
 " BS"," HT"," LF"," VT"," FF"," CR"," SO"," SI",
 "DLE","DC1","DC2","DC3","DC4","NAK","SYN","ETB",
 "CAN"," EM","SUB","ESC"," FS"," GS"," RS"," US" };

Notice that each string literal is the same length; this is so that our table's columns align
nicely, even though some mnemonics are two characters and some are three characters.

Working with Strings Chapter 15

[333]

We are now ready to add the control characters to our ASCII table. Copy the
printASCII.c file to printASCIIwithControl.c and make the following changes:

Add the ctrl[] lookup table either before or after the declarations for c11.
through c4.
Before the first printf() function, add the following:2.

 printf("| %s ^%c %3d %#4x ",
 ctrl[i] , c1+64 , c1 , c1);

Before the second print() function, add the following:3.

 printf("| %s ^%c %3d %#4x ",
 ctrl[i] , c1+64 , c1 , c1);

The printf() statements are getting rather long. You can choose to simplify the4.
printf() function in the if()… else… statement.
Your program should now look like the following:5.

#include <stdio.h>
int main(void) {
 char* ctrl[] = { "NUL","SOH","STX","ETX","EOT","ENQ","ACK","BEL",
 " BS"," HT"," LF"," VT"," FF"," CR"," SO"," SI",
 "DLE","DC1","DC2","DC3","DC4","NAK","SYN","ETB",
 "CAN"," EM","SUB","ESC"," FS"," GS"," RS"," US"
};
 char c1 , c2 , c3 , c4;
 printf("|-----------------");
 printf("|---|\n");
 printf("| SYM Ch Dec Hex ");
 printf("| Ch Dec Hex | Ch Dec Hex | Ch Dec Hex |\n");
 printf("|-----------------");
 printf("|-------------|-------------|-------------|\n");
 for(int i = 0 ; i < 32; i++)
 {
 c1 = i;
 c2 = i+32;
 c3 = i+64;
 c4 = i+96;
 printf("| %s ^%c %3d %#4x " ,
 ctrl[i] , c1+64 , c1 , c1);
 printf("| %c %3d %#x " ,
 c2 , c2 , c2);
 printf("| %c %3d %#x " ,
 c3 , c3 , c3);

 if(c4 != 127) {

Working with Strings Chapter 15

[334]

 printf("| %c %3d %#x \n" ,
 c4 , c4 , c4);
 } else {
 printf("|%s %3d %#x |\n" ,
 "DEL" , c4 , c4);
 }
 }
 c1 = 0x7;
 printf("%c%c%c", c1 , c1 , c1);
}

Save this program, then build and run it. You should see the following output:6.

Working with Strings Chapter 15

[335]

You should also hear three system bell tones. We have added to our table a column
grouping of ASCII control characters that shows the following:

The control character mnemonic
The control character's keyboard equivalent
The decimal value of the control character
The hex value of the control character

If you compare this output to the table given at the beginning of this chapter, you may find
that we need to add just one more column to our control character group. That column is
the printf() format string escape character for printable control characters. Recall that not
all control characters are printable since they control other aspects of computer devices. To
print this final column, we have to add another lookup table, as follows:

 char format[] = { '0', 0 , 0 , 0 , 0 , 0 , 0 , 'a' ,
 'b', 't' , 'n' , 'v' , 'f' , 'r' , 0 , 0 ,
 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
 0 , 0 , 0 , 'e' , 0 , 0 , 0 , 0 };

Notice that this is an array of single characters. To print the escape sequence for each
control character that is printable, we'll need to build a string with the backslash (\) and
that control character's key equivalent, as follows:

 char fmtStr[] = " ";
 if(format[i])
 {
 fmtStr[1] = '\\';
 fmtStr[2] = format[i];
 }

This snippet of code should appear within the for()... loop just before the first
printf() function. At each iteration through the loop, fmtStr is reallocated and
initialized to a string of three spaces. If its corresponding lookup table value is not NULL,
then we modify fmtStr to have a backslash (\) and the appropriate character.

Then, the first printf() function needs to be modified, as follows:

 printf("| %s %s ^%c %3d %#4x " ,
 ctrl[i] , fmtStr , c3 , c1 , c1);

Working with Strings Chapter 15

[336]

Finally, we have to adjust the table's header lines to match. Copy the
printACIIwithControl.c file to the file named
printASCIIwithControlAndEscape.c. Make the following changes:

Add the format[] lookup table.1.
Add logic to build fmtStr.2.
Alter the printf() routine to include fmtStr.3.
Adjust the heading printf() functions to match the added column.4.

Compile and run printASCIIwithControlAndEscape.c. You should see the following
output:

You may have to fiddle with your printf() statements to get the headings just right. You
now have your own table of the ASCII character set, which you can execute as needed.

Working with Strings Chapter 15

[337]

As an added experiment, you might want to modify printASCII.c to print the characters
from 128 to 255. Since these are extended ASCII characters, they are not expected to be
identical from one operating system to the next. There is no standard for extended ASCII
characters. After you try this yourself, which I urge you to do, you can find the
printExtendedASCII.c program in the code repository to compare with your version.

Common operations on strings – the
standard library
Just as for characters, the C standard library provides some useful operations on strings.
These are declared in the string.h header file. We will take a brief look at these functions
here and then incorporate them into working programs in later chapters to do various
interesting things.

Common functions
If you carried out one of the experiments in the earlier sections of this chapter, you will
have already encountered the strlen() function, which counts the number of characters
(excluding the terminating nul character) in a given string. The following is a list of some
useful functions and what they do:

Copy, append, and cut strings:
strcat(): Concatenates two strings. This appends a copy of one
null-terminated string to the end of a target null-terminated string,
then adds a terminating `\0' character. The target string must
have sufficient space to hold the result.
strcpy(): Copies one string to another (including the terminating
`\0' character).
strtok(): Breaks a string into tokens or sub-strings.

Compare strings:
strcmp(): Compares two strings. Lexicographically compares two
null-terminated strings.

Working with Strings Chapter 15

[338]

Search characters in strings:
strchr(): Locates a character in a string. This finds the first
occurrence of the desired character in a string.
strrchr(): Locates a character in a string in reverse. This finds
the last occurrence of the desired character in a string.
strpbrk(): Locates any set of characters in a string.

Search for one string in another string:
strstr(): Locates a substring in a string.

In these functions, it is imperative that null-terminated strings are supplied. Therefore,
some care must be exercised when using these functions to avoid mayhem.

Safer string operations
Sometimes, it is not possible to ensure that a null-terminated array of characters is
provided. This is especially common when strings are read from a file, read from the
console, or dynamically created in unusual ways. To prevent mayhem, a few string
functions have a built-in limiter that only operates on the first N characters of the string
array. These are considered safer operations and are described in the following list:

Copy and append strings:
strncat(): Concatenates two strings. This appends a copy of up
to N characters of one null-terminated string to the end of a target
null-terminated string, then adds a terminating `\0' character.
The target string must have sufficient space to hold the result.
strncpy(): Copies up to N characters of one string to another.
Depending on the size of the destination, the destination string
may either be filled with the nul characters or may not be null-
terminated.

Compare strings:
strncmp(): Compares two strings. Lexicographically, it compares
no more than N characters of two null-terminated strings.

To see how these functions operation, create a file called saferStringOps.c and enter the
following program:

#include <stdio.h>
#include <string.h>
#include <ctype.h>

Working with Strings Chapter 15

[339]

void myStringNCompare(char* s1 , char* s2 , int n);

int main(void) {
 char salutation[] = "hello";
 char audience[] = "everybody";
 printf("%s, %s!\n", salutation , audience);
 int lenSalutation = strlen(salutation);
 int lenAudience = strlen(audience);
 int lenGreeting1 = lenSalutation+lenAudience+1;
 char greeting1[lenGreeting1];
 strncpy(greeting1 , salutation , lenSalutation);
 strncat(greeting1 , audience , lenAudience);
 printf("%s\n" , greeting1);

 char greeting2[7] = {0};
 strncpy(greeting2 , salutation , 3);
 strncat(greeting2 , audience , 3);
 printf("%s\n" , greeting2);

In the first part of this program, we are using strncpy() and strncat() to build strings
from other strings. What is significant is that using these functions forces us to consider
string lengths, as well as whether the resulting string will be large enough to hold to
combined strings.

The remainder of the program is as follows:

 myStringNCompare(greeting1 , greeting2 , 7);
 myStringNCompare(greeting1 , greeting2 , 3);
 char* str1 = "abcde";
 char* str2 = "aeiou";
 char* str3 = "AEIOU";
 myStringNCompare(str1 , str2 , 3);
 myStringNCompare(str2 , str3 , 5);
}

void myStringNCompare(char* s1 , char* s2 , int n)
{
 int result = strncmp(s1 , s2 , n);
 char* pResultStr;
 if(result < 0) pResultStr = "less than (come before)";
 else if(result > 0) pResultStr = "greater than (come after)";
 else pResultStr = "equal to";
 printf("First %d characters of %s are %s %s\n" ,
 n, s1 , pResultStr , s2);
}

Working with Strings Chapter 15

[340]

In this part of the program, we use strncmp() in our own wrapper function,
myStringNCompare(), to compare the sort order of the various pairs of strings. A wrapper
function is a function that performs a desired simple action as well as wraps additional
actions around it. In this case, we are adding a printf() statement to indicate whether one
string is less than, equal to, or greater than another string. Less than means that the first
string comes alphabetically before the second string. In each string comparison, we limit the
comparison to the first N characters of the string. Note also that lowercase letters are
greater than (come after) uppercase letters; this implies that care must be taken when
comparing strings of mixed cases.

Save, compile, and run the program. You should see the following output:

Notice in these examples how strncmp() compares only the first N characters of each
string and ignores the rest. I would encourage you to further experiment with the copy,
concatenation, and comparison operations on various strings of your choosing to get a
good feel for how these functions operate.

There are a number of other string functions, but their use is highly specialized. They are as
follows:

stpcpy(): Like strcpy() but returns a pointer to the terminating '\0'
character of dst.
strpncpy(): Like man but returns a pointer to the terminating '\0' character of
dst.
strchr(): Locates the first occurrence of a character in a string from the left.
strrchr(): Locates the first occurrence of a character in a string from the right.
strspn(): Finds the first character in a string that is not in the given character
set.
strcspn(): Finds the first character in a string that is in the given character set.
strpbrk(): Finds the first occurrence in a string of any character in the given
character set.

Working with Strings Chapter 15

[341]

strsep(): Finds the first occurrence in the given character set and replaces it
with a '\0' character.
strstr(): Finds the first occurrence of a string in another string.
strcasestr(): Like strstr() but ignores cases of both strings.
strnstr(): Finds the first occurrence of a string in another string searching no
more than N characters.
strtok(): Isolates tokens in a string. Tokens are separated by any character in
the given delimiter character set.
strtok_r(): Similar to strtok().

Further explanation about the use of these functions is beyond the scope of this book. They
are listed for completeness only.

Summary
In this chapter, we explored the elements of strings—characters. In particular, we explored
the details of ASCII characters and how they are organized by developing a program in
several iterations to print out a complete ASCII table. We also explored some simple
operations on characters using the C standard library.

From there, we saw how C strings are special arrays made up of characters and a
terminating NUL character. The NUL terminating character is something to which we must
pay particular attention to when we create and manipulate strings. We explored how
strings and string operations are built on other existing C concepts of arrays and pointers.
We explored the difference between string literals, which are constant and modifiable
strings. We further saw how to pass both of them to functions. All of these string concepts
have been employed in the program we've developed to print the full 7-bit ASCII character
set table. Finally, we introduced some basic string functions from the C standard library;
these will be further explored in later chapters.

Even though characters and strings are built upon existing C concepts, there is quite a bit to
absorb in this chapter. I urge you to work through each of the programs and attempt the
experiments on them on your own before proceeding to the following chapters.

Working with Strings Chapter 15

[342]

One of the most important programming skills demonstrated in this chapter is the process
of iterative program development. That is, with a rather complex end result in mind, we
started by creating a simple program to produce a small but essential part of the result. In
the first iteration, we printed just a single column of characters. Each time we revisited that
program, we added more functionality until we achieved our desired end result—we
printed more columns. Then, we considered the DEL character. Finally, we took two
iterations to print control character symbols and their printf() forms.

With the completion of this chapter, we have covered the essentials of C programming
syntax. In subsequent chapters, we will explore the various ways that we can use C to solve
useful and interesting problems. In each chapter, we will build upon all of the concepts
introduced up to this point, as well as introduce the important, yet somewhat abstract,
programming concepts that will make our programs robust and reliable.

16
Creating and Using More

Complex Structures
In the real world, objects that we may want to model with data types and then manipulate
with our program code are often best expressed as collections—sometimes complex
collections—of the various data types we have already encountered. We have seen how to
make homogenous collections with arrays, where all of the values in the collection are of
the same type and size. We have also seen how to make heterogeneous collections with
structures, where the various types in the structure are simple intrinsic types, even if they
are not all the same type in the real world.

In this chapter, we will explore more complex structures. These include the following:

Arrays of structures
Structures consisting of arrays
Structures consisting of other structures
Structures consisting of arrays of structures

This may sound bewilderingly complex at first, but it is not. In reality, this is a logical
extension of the concepts we have already explored using intrinsic types to
create combinations of structures and arrays. We are simply expanding the kinds of data
types that we can group into structures and arrays to also include other structures and
arrays. We will also explore some new syntax to access elements of these complex
structures.

It is my hope that with this exploration, you will see how C establishes simple rules for
basic concepts and then uniformly extends them to more complex topics. We have already
seen this with how single-dimensional arrays are logically extended to multi-dimensional
arrays. We have also seen this with how arrays can be extended to create strings. We will
now see this with complex structures.

Creating and Using More Complex Structures Chapter 16

[344]

As we explore these complex structures, we will greatly expand our ability to model real-
world objects. As we do that, we will also expand how we think about how to manipulate
those complex objects with functions that operate specifically on a given complex structure.
Furthermore, we will see how pointers make this manipulation both straightforward and
efficient.

The following topics will be covered in this chapter:

Creating an array of structures
Accessing structure elements within an array
Manipulating an array of structures
Creating a structure consisting of other structures
Accessing structure elements within the structure
Manipulating a structure consisting of other structures
Creating a structure with arrays
Accessing array elements within a structure
Manipulating array elements within a structure
Creating a structure with an array of structures
Accessing individual structure elements of the array within a structure
Manipulating a structure with an array of structures

To illustrate these concepts, we will continue our development of the card4.c program
that we encountered in Chapter 10, Creating Custom Data Types with typedef. By the end of
this chapter, we will have a basic playing card program that will create a deck of cards,
shuffle it into a random order, and then deal out four hands of five cards for each hand.

Technical requirements
Continue to use the tools you chose in the Technical requirements section of Chapter 1,
Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Creating and Using More Complex Structures Chapter 16

[345]

Introducing the need for complex structures
We have explored C's intrinsic types—integers, floats/doubles, Booleans, and characters.
We have also explored C's custom types—structures and enumerations. We have seen how
a structure is a single instance of a grouping of intrinsic types to represent a set of related
characteristics of something. Additionally, we have explored C's collection type—arrays,
which are groups containing all of the same type of thing.

Each of the data types we have explored more or less represent real-world objects that we
may wish to manipulate. More often, however, real-world things are far more complicated.
Therefore, these types alone may not adequately represent the real-world object we want to
model and manipulate. So, we need to learn how to combine structures with arrays and
arrays of structures to be able to represent a much broader set of real-world things. In doing
so, we can model them and then manipulate them with C programs. Complex
representations of real-world things are often called data structures.

Creating a data structure adds significantly to the meaning and context of each of the
values that comprise it. For example, a value that represents a length is not as meaningful
alone as a group of values that represents not just the length, but also the width, height, and
a set of angles that describes a solid object. With this grouping, each of those values is
related in a way that might not be obvious if they were not otherwise grouped together.
The data structure becomes a logical representation of the real-world object.

The core concept of programming real-world things involves two levels of abstraction:

To represent the thing in a minimal but essential manner
To manipulate the thing or things in meaningful ways for our purposes

We represent the essential characteristics of the thing with data structures. We are unlikely
to represent every characteristic of the thing; we represent only the characteristics of the
thing we care to manipulate. We also choose a set of manipulations on the thing—its data
structure. Not all manipulations are worthwhile or valid. Some manipulations are simple
and may only need to be included in a set—that is, is this like other things, or simple
equality? (That is, does one thing have identical qualities to another?) Other manipulations
can be much more complex depending on the thing being represented and can involve a
single thing or multiple things, such as adding two objects together or determining whether
one object is greater than another.

As we learn how to create complex data structures, we will explore how to access the
various parts of each kind of data structure and then perform manipulations, treating each
data structure as a whole, rather than as individual parts.

Creating and Using More Complex Structures Chapter 16

[346]

Revisiting card4.h
We left Chapter 10, Creating Custom Data Types with typedef, with the card.h program and
card5.c, which split card4.c into a header file and an implementation file. However,
instead of going further with multiple-file program development, we will return to
card4.c and rework a few things to include the knowledge we've gained since Chapter
10, Creating Custom Data Types with typedef. We'll use it to create a series of
programs, carddeck.c. carddeck.c will start out simple, but we will continue to modify
it until we've added all the complex structures needed. This will remain a single file
throughout this chapter. We will see how to logically split up our final
carddeck.c program into multiple files and then build it in Chapter 24, Working with
Multi-File Programs.

Before we begin adding complex structures to our carddeck.c series of programs, we
need to rework card4.c to a simpler starting point. So, let's backtrack a little bit. Make a
copy of the card4.c file and rename the copy carddeck_0.c. If you have been creating
each program file in the same directory, now might be a good time to create a folder for the
files we will create in this chapter. You might then have a folder path such as the following:

$HOME/PackT/LearnC/Chapter16

Here, $HOME is the home directory for the username you used to log in to your computer.

Instead of using $HOME, you may be accessing your folders with the tilde (~) symbol, as
follows:

~/PackT/LearnC/Chapter16

Both file paths access the same file directory.

You might already have a file organization system with folders named Chapter01 through
Chapter15 in your file hierarchy. This sort of organization mirrors the way files are stored
in the source code repository. Now, you can move carddeck_0.c from where it was
created to ../Chapter16.

carddeck_0.c has a number of structures and functions that we no longer need. Well, not
really; we'll add them back later, but they will be different enough that we can delete them
for now. Open carddeck_0.c in your editor and remove the struct Hand definition, the
function prototypes, all the statements in main(), and all of the function definitions that
follow main().

Creating and Using More Complex Structures Chapter 16

[347]

Your file should now consist of two #include statements, the enum Suit and enum Face
definitions, a struct Card definition, and an empty main() function. It should look as
follows:

#include <stdio.h>
#include <stdbool.h>

typedef enum {
 club = 1, diamond, heart, spade
} Suit;

typedef enum {
 one = 1, two, three, four, five, six, seven,
 eight, nine, ten, jack, queen, king, ace
} Face;

typedef struct
{
 Suit suit;
 int suitValue;
 Face face;
 int faceValue;
 bool isWild;
} Card;

int main(void)
{
}

Save this file and compile it. You shouldn't receive any error or warning messages and the
compilation should succeed. Even though the program does nothing, it is still a valid
program. We will call this our first known-good program. As we add more to this
program, we will move in a stepwise fashion from one known-good program to the next
known-good version of our program. In this manner, we can build what will become a
complex program step by step and limit the level of possible confusion that might occur
between steps.

After decades of programming, my personal experience is that it is always easier, faster,
and less painful to progress from one known-good program state to the next known-
good program state, adding and changing any aspects of your program as needed until you
finally arrive at the desired end. The number of changes made and the lines of code added
between steps are usually not trivial (often, a dozen or two of lines of code are needed), but
are also not so excessive that you have hundreds of lines of new, untested code. If you
make too large a step and the compiler fails or the program returns a bad output, the
problems are rarely simple to find.

Creating and Using More Complex Structures Chapter 16

[348]

There is seldom a single issue in that huge mass of code changes. Therein lies the
challenge—trying to work through a lot of untried, untested code, such that you don't have
a good idea of where to start looking for the problems you've unwittingly introduced. So,
we will employ a method of making small, stepwise changes throughout this chapter.

Let's add one more set of changes before we move on. Open carddeck_0.c and add the
following to the main() function:

int main(void) {
 Card aCard;

 aCard.suit = diamond;
 aCard.suitValue = (int)diamond;
 aCard.face = seven;
 aCard.faceValue = (int)diamond;
 aCard.isWile = true;

 PrintCard(&aCard);
 printf("\n");
}

This should be familiar from earlier chapters. We declare a Card structure and then assign
values to each element of the aCard variable structure. We also print the values with the
PrintCard() function. But wait—we need to add that function back in. Notice that when
we call the function here, we are using the address of aCard, so the function declaration
and definition should take a pointer parameter. Add the following function prototype
before main():

void PrintCard(Card* pCard);

After the main() function body, add the following function definition:

void PrintCard(Card* pCard) {
 char cardStr[20] = {0};
 CardToString(pCard , cardStr);
 printf("%18s" , cardStr);
}

This function is quite a bit different t0 the printCard() function from Chapter 10,
Creating Custom Data Types with typedef. Instead of copying the structure via the function
parameter, here, we are using a pointer to the structure. Only the address of the structure is
copied into the function parameter, not the whole structure.

Before, we used multiple printf() statements in two switch()… statements to print each
element of the card. Here, we only use one printf() call.

Creating and Using More Complex Structures Chapter 16

[349]

In this version of PrintCard(), not only is the name slightly different from before, but we
are also declaring a character array into which we'll create a string describing the card.
The CardToString() function will do that. Then, we'll print the resulting string with
printf(). The %18s format specifier constrains the string output to the 18 characters we
actually need to see (rather than 20).

So now, with this approach, we need a function prototype for CardToString(). Add the
following prototype before main():

void CardToString(Card* pCard , char pCardStr[20]);

Next, add the following function definition to the end of the file:

void CardToString(Card* pCard , char pCardStr[20]) {
 switch(pCard->face) {
 case two: strcpy(pCardStr , " 2 "); break;
 case three: strcpy(pCardStr , " 3 "); break;
 case four: strcpy(pCardStr , " 4 "); break;
 case five: strcpy(pCardStr , " 5 "); break;
 case six: strcpy(pCardStr , " 6 "); break;
 case seven: strcpy(pCardStr , " 7 "); break;
 case eight: strcpy(pCardStr , " 8 "); break;
 case nine: strcpy(pCardStr , " 9 "); break;
 case ten: strcpy(pCardStr , " 10 "); break;
 case jack: strcpy(pCardStr , " Jack "); break;
 case queen: strcpy(pCardStr , "Queen "); break;
 case king: strcpy(pCardStr , " King "); break;
 case ace: strcpy(pCardStr , " Ace "); break;
 default: strcpy(pCardStr , " ??? "); break;
 }
 switch(pCard->suit) {
 case spade: strcat(pCardStr , "of Spades "); break;
 case heart: strcat(pCardStr , "of Hearts "); break;
 case diamond: strcat(pCardStr , "of Diamonds"); break;
 case club: strcat(pCardStr , "of Clubs "); break;
 default: strcat(pCardStr , "of ???s "); break;
 }
}

This function looks similar to the printCard() function. Instead of using the printf()
calls, we are calling strcpy() in the first switch()… statement and strcat() in the
second switch()… statement. We use a character array that is large enough to hold all of
our card name characters (don't forget the NULL character at the end). In reality, we need a
character array that is only 18 bytes in size, but we rounded it up to 20.

Creating and Using More Complex Structures Chapter 16

[350]

Recall how we access the two structure member elements with the -> notation. We are
using a pointer to a Card structure in this function to avoid copying structures into function
parameters. When structures are complex and/or very large, the use of pointers can be
significantly more efficient for function calls, especially if the function may be called
hundreds or thousands of times, for instance, or when we have large arrays of possibly
large structures.

Note how we created a character array outside of our call to CardToString(), then filled
the character array in CardToString(), and then used the constructed string before
exiting PrintCard(). We did this because strcpy() and strcat() do not allocate
memory for us; we must do it ourselves. We can't allocate memory in CardToString()
because it would be deallocated when we leave the function and then unavailable to the
printf() statement, where it is needed. So, we need to allocate the character array in the
calling function and fill it in the called function so that we can then use it after we return
from the called function. The character array is then deallocated after we have used it when
we exit PrintCard(). This is a common C pattern for string creation and usage.

The reasons for making these changes to PrintCard() are as follows:

First, we get to use some common C string functions in CardToString().
Second, rather than print a single card on each line, later on, we will print four
cards per line.

The preceding printCard() routine had the new line embedded within it; therefore, it did
not allow us to do what we now want.

As a checkpoint, you may want to save this file and compile it. Did it compile? No, because
we forgot to include the string.h header file that makes strcpy() and strcat() visible
to our program. Add the following to the top of your file:

#include <string.h>

Save, compile, and run the program. You should see the following output:

Creating and Using More Complex Structures Chapter 16

[351]

There is one final change to this version of carddeck_0.c to be made. Currently, we have
two operations on a Card structure—PrintCard() and CardToString(). The last one to
add is InitializeCard(). Change main() to the following:

int main(void) {
 Card aCard;
 InitializeCard(&aCard, diamond , seven , true);
 PrintCard(&aCard);
 printf("\n");
}

Next, after main(), add the following function definition:

void InitializeCard(Card* pCard, Suit s , Face f , bool w) {
 pCard->suit = s;
 pCard->suitValue = (int)s;
 pCard->face = f;
 pCard->faceValue = (int)f;
 pCard->isWild = w;
}

Notice that we simply moved the statements from main() into
the InitializeCard() function. This change made main() both simpler and clearer.
Also, the InitializeCard() function tells us exactly which values we need in order to
populate a Card structure properly.

Save, compile, and run the program. You should see the following output (which is the
same as before this change):

To summarize this section, we added three operations to Card for the following reasons:

Each of these routines has specific knowledge of the Card structure. Most of the
rest of the program doesn't need to know the details and can rely on these
operations.
The caller of these routines needs to know very little about the Card structure.
By focusing the functionality on a single function, we, as programmers, can focus
on a smaller set of operations.
The interaction between the caller and the called function is well-defined.

Creating and Using More Complex Structures Chapter 16

[352]

By using these operations on a given structure, the behavior is consistent and
known.
If the structure changes, we would need to focus on changes to just the
operations on that structure and can ignore large parts of the program. This leads
to a more consistent and reliable program operation as the program evolves over
time.

These motivations are compelling. As the objects that we model and our programs become
more complex, we need to simplify our thinking about solving the larger problem. We can
do this by solving a redefined yet smaller set of problems. Here, we are the ones who
break down the larger problem into a set of smaller problems. The solution to the larger
problem, then, is composed of the set of solutions we made for our smaller problem set.
Furthermore, it is easier to modify a small set of routines for changes to a single structure
than it is to make these changes in many places over a large program without these
routines.

At this point, we have reviewed a wide variety of C concepts that were explored in
Chapters 11, Working with Arrays, through Chapter 15, Working with Strings. We have also
introduced some very important new programming concepts. In essence, we have taken
card4.c and changed it into a more flexible version that does the same things but can
more easily be extended for new functionality. Now would be a good time to review the
steps we performed to create carddeck_0.c before we move on to the next section and
look at carddeck_1.c, the next iteration of this program:

Start with card4.c as a starting point for carddeck_0.c by eliminating a bunch1.
of structures and functions. These will be added back later.
Create a function to print a card using a pointer. This function creates a string to2.
be populated by another function and then prints that string.
Create a sub-function whose only purpose is to populate the string given to it3.
with a description of the card, returning that string to the calling function.
Create a function to initialize a card using a pointer. This function centralizes4.
knowledge of the fields needed to create a card.
Rework main() to verify our new functions.5.

You may notice that except for the new use of pointers in our functions, much of this code
is similar to the statements found in card4.c. Pay particular attention to how these have
been reworked into more general functions.

If you download the file in the repository, you may notice that the line spacing is different
and comments are added. This is done to save space in the text while keeping the program
listings valid.

Creating and Using More Complex Structures Chapter 16

[353]

Understanding an array of structures
Before we begin with the next set of changes, make a copy of carddeck_0.c and rename it
carddeck_1.c. In this section, we will make changes to carddeck_1.c.

Probably the simplest of the complex structures we will explore in this chapter is an array
of structures. Recall that all the elements of an array are of a single type and size. While
before, we created arrays of one intrinsic type or another, we will now create an array of
one custom type.

Creating an array of structures
In the carddeck_1.c program, we need to model a deck of cards. To do this, we will create
an array of the Card structures, as follows:

Card deck[52];

With this statement, we have created an array of 52 cards.

Note how, in the preceding definition, 52 is a magic number; that is, it is a literal number
that has a special meaning. However, there is no context associated with that number
unless it is stated in the comments. One problem with magic numbers is that as a program
evolves or is applied to different uses, the magic numbers aren't all always updated
properly. To avoid this problem, we will define some convenience constants, as follows:

enum {
 kCardsinDeck = 52,
 kCardsinHand = 5,
 kCardsinSuit = 13,
 kNumHands = 4
}

This enum statement declares four constants whose values we defined for each one, these
are named literal constants. We would like to have used the following:

const int kCardsInDeck = 52;
const int kCardsInHand = 5;
...

We cannot use them since we will need them to declare arrays. C sees a const int as a
variable even though it is a read-only one. So, when we declare an array with a constant
size, C will not permit the use of a const int but will permit the use of a constant.

Creating and Using More Complex Structures Chapter 16

[354]

We can then use this constant, as follows:

Card deck[kCardsInDeck];

This statement declares a deck to have 52 cards, the same as before, but now if, for any
reason, we add, say, 2 wildcards to our deck or, say, we want to play a game that uses 104
cards (two decks), we need to simply change our constant value and recompile. The benefit
of using this constant will become even more obvious when we create methods to
manipulate our deck.

While we're at it, let's create a few more convenience constants pertaining to a card, as
follows:

const bool kWildCard = true;
const bool kNotWildCard = false;

The last two Boolean constants make it clear whether a card is wild or not and provide
more context than just true or false for the isWild property of a card. We can use the
const bool type here because these will not be used in any array declarations.

To carddeck_1.c, add the four constant value definitions before the main() function.
Next, add the deck array definition to the main() function. Save and compile the program.
You should not see any errors.

Accessing structure elements within an array
Now that we have an array of 52 cards, how do we access, say, the fourth card?

We can do so with the following declaration:

Card aCard = deck[3];

Here, we've declared a new card variable (a structure)—aCard—and assigned (copied) the
structure from the fourth element of deck to it. We now have two copies of the same
structure with each member copied in each. If we make any modifications to aCard, they
are not made to deck[3] because we are operating on a different structure address than
that found at deck[3].

To modify the elements of the structure in the fourth array element directly, we use dot (.)
notation, as follows:

 deck[3].suit = spade;
 deck[3].suitValue = (int)spade;
 deck[3].face = five;

Creating and Using More Complex Structures Chapter 16

[355]

 deck[3].faceValue = (int)five;
 deck[3].isWild = kNotWildCard;

Because of operator precedence, deck[3] is evaluated first, which gives us a structure. The
dot (.) notation is then evaluated, which gives us a specific element within the structure.

Modify main() to initialize a single card, as follows:

int main(void) {
 Card deck[kCardsInDeck];

 deck[3].suit = spade;
 deck[3].suitValue = (int)spade;
 deck[3].face = five;
 deck[3].faceValue = (int)five;
 deck[3].isWild = kNotWildCard;

Sometimes, it is either convenient or necessary to use a pointer to access the structure
elements in the array. We can do so as follows:

 Card* pCard = &deck[3];
 pDeck->suit = spade;
 pDeck->suitValue = (int)spade;
 pDeck->face = five;
 pDeck->faceValue = (int)five;
 pDeck->isWild = kNotWildCard;

First, a pointer to a Card structure is created and is assigned the address of the fourth
element of the deck. Remember that the target of a pointer must first exist before assigning
its address to a pointer. In this case, deck[52] has already been created. Again, because of
operator precedence, deck[3] is evaluated, which refers to a Card structure; then, & is
evaluated to the address of that Card structure. Using the pointer variable with the arrow
(->) notation, we then assign a value to each element of the structure.

We are using a pointer to refer to a single structure location, which is deck[3]. No copies
of the structure nor any of its members are created.

This is identical to using a pointer to access a single structure. Using pointers to structures
gives us the flexibility to modify the structure within a function call, thereby eliminating
the need to copy the structure into the function and then copy it back out after it has been
modified in the function.

Creating and Using More Complex Structures Chapter 16

[356]

Now, we can modify main() to initialize the fourth card and print it out, as follows:

int main(void) {
 Card deck[kCardsInDeck];

 Card* pCard = &deck[3];
 pCard->suit = spade;
 pCard->suitValue = (int)spade;
 pCard->face = five;
 pCard->faceValue = (int)five;
 pCard->isWild = kNotWildCard;

 PrintCard(pCard);
 printf("\n");
}

If you make this modification, save and compile the program. You should see the following
output:

However, we created the InitializeCard() function earlier. Let's use that instead, as
follows:

int main(void) {
 Card deck[kCardsInDeck];
 Card* pCard = *deck[3];

 InitializeCard(pCard, spade , five , kNotWildCard);
 PrintCard(pCard);
 printf("\n");
}

As you can now see, the main() function not only has fewer lines of code, but it is also
much clearer what is happening with each function call. The only oddity here is the
final printf() function. Remember that PrintCard() does not include a new line, so
now we have to supply that ourselves.

Save, compile, and run this version of carddeck_1.c. You should see the following
output:

Creating and Using More Complex Structures Chapter 16

[357]

At this point, we have an array of cards, which is our deck, and some functions to
manipulate individual cards. We can now think about manipulating the entire deck as a
whole.

Manipulating an array of structures
Now that we have a deck of cards, what are some operations that we might need to
perform on it? Two operations immediately come to mind—first, initializing the deck to the
proper suit and face values, and second, printing out the deck of cards.

Let's add the following two function prototypes to the program, as follows:

void InitializeDeck(Card* pDeck);
void PrintDeck(Card* pDeck);

In each function, the function takes a pointer to a Card structure, which for now is an array
of Card. These will operate on the entire deck, so no other parameters are needed for these
functions.

To initialize our deck of cards, we will loop through the array, setting the structure member
values. Before we show that, however, consider the patterns of repetition in an ordered
card deck. Each suite has 13 cards. Within those 13 cards, the face value goes from two to
ace (13). We now have some options for how to loop through the deck:

We could use one loop with 52 iterations and figure out when the suit and face
values change, and then set suit and face as appropriate.
We could use four loops of 13 iterations each. In each loop, the suit is fixed and
the face value is assigned as the loop is iterated.
We could use one loop, setting the suit and face values for four cards at a time.

The first option sounds like it might involve some tricky calculations. The second option is
reasonable but involves more looping structures (more code). So, we will take the third
approach. But how can we conveniently assign the face values without the need for
the switch()… statement? The answer is to use a temporary lookup table that is set up so
that the index of the card matches the lookup table's face value index.

Creating and Using More Complex Structures Chapter 16

[358]

The following function illustrates both the lookup table and the single loop:

void InitializeDeck(Card* pDeck)
{
 Face f[] = { two , three , four , five , six , seven ,
 eight , nine , ten , jack , queen , king , ace };
 Card* pCard;
 for(int i = 0 ; i < kCardsInSuit ; i++) {
 pCard = &(pDeck[i + (0*kCardsInSuit)]);
 pCard->suit = spade;
 pCard->suitValue = (int)spade;
 pCard->face = f[i];
 pCard->faceValue = (int) f[i];

 pCard = &(pDeck[i + (1*kCardsInSuit)]);
 pCard->suit = heart;
 pCard->suitValue = (int)heart;
 pCard->face = f[i];
 pCard->faceValue = (int) f[i];

 pCard = &(pDeck[i + (2*kCardsInSuit)]);
 pCard->suit = diamond;
 pCard->suitValue = (int)diamond;
 pCard->face = f[i];
 pCard->faceValue = (int) f[i];

 pCard = &(pDeck[i + (3*kCardsInSuit)]);
 pCard->suit = club;
 pCard->suitValue = (int)club;
 pCard->face = f[i];
 pCard->faceValue = (int) f[i];
 }

To understand the code, we need to do the following:

First, we have already seen how arrays and pointers to arrays can be used1.
interchangeably in function parameters. In this function, we use a pointer to the
array.
Next, we set up the lookup table for the face values. I would prefer to use2.
the kCardsInSuit constant, but C does not permit that when initializing arrays
in this manner. So, we leave it out.

Creating and Using More Complex Structures Chapter 16

[359]

Finally, we create a loop of kCardsInSuit iterations. Within this loop, four3.
cards are configured in each iteration of the loop. To do this, the following five
statements are executed for each card:

The address of the card structure is calculated from the loop counter1.
and a multiple of the number of cards in a suit. Note that the spades
suit starts at index (0*kCardsInSuit); the hearts suit starts at index
(1*kCardsInSuit); the diamonds suit starts at index (2 *
kCardsInSuit); and clubs start at index (3 * kCardsInSuit).
Notice how the pattern of (<suitNumber> * kCardsInDeck) is
repeated to make the pattern a bit more explicit for all four suits.
suit is assigned. 2.
suitValue is assigned based on the enumerated suit value.3.
face is assigned based on the loop index, which corresponds to the4.
lookup table's indexed value.
faceValue is assigned based on the enumerated face value.5.

But hold on just a minute. Aren't we recreating what a function we've already created does?
So, instead, let's use that function and see why doing so is far better. Add the following
function to carddeck_1.c:

void InitializeDeck(Card* pDeck)
{
 Face f[] = { two , three , four , five , six , seven ,
 eight , nine , ten , jack , queen , king , ace };
 Card* pC;
 for(int i = 0 ; i < kCardsInSuit ; i++) {
 pC = &(pDeck[i + (0*kCardsInSuit)]);
 InitializeCard(pC , spade , f[i], kNotWildCard);
 pC = &(pDeck[i + (1*kCardsInSuit)]);
 InitializeCard(pC , heart , f[i], kNotWildCard);

 pC = &(pDeck[i + (2*kCardsInSuit)]);
 InitializeCard(pC , diamond , f[i], kNotWildCard);

 pC = &(pDeck[i + (3*kCardsInSuit)]);
 InitializeCard(pC , club , f[i], kNotWildCard);
 }

As you can see, the overall approach is the same, but instead of five statements for each
card in the loop, we only use two statements.

Creating and Using More Complex Structures Chapter 16

[360]

We are still using the lookup table and the suit offsets to get the proper card. In this version,
however, knowledge of a Card structure remains in the InitializeCard() function. Not
only does this require quite a bit less typing, but what is happening should also be much
clearer to any reader of this function.

If our deck ever changes, we only need to consider InitializeDeck() and the routines
that manipulate it. We can largely ignore the Card manipulation routines. If, on the other
hand, our deck remains the same but we need to change the properties of our Card
structure, we need only consider the Card manipulation functions and possibly any
changes to the Card function calls.

Our final change to carddeck_1.c is to add the PrintDeck() function. If we merely print
one card per line, this routine will be a simple loop of kCardsInDeck iterations with a
single call to PrintCard(). However, to print an ordered, unshuffled deck of cards in as
few output lines as possible, we will print four cards per line, 13 lines in total.

As we do that, we'll order the suits to each be in a single column. To do that, our approach
will be similar to InitializeDeck(), but without the need for a lookup table. Add the
following function to carddeck_1.c:

void PrintDeck(Card* pDeck) {
 printf("%d cards in the deck\n\n" ,
 kCardsInDeck);
 printf("The ordered deck: \n");
 for(int i = 0 ; i < kCardsInSuit ; i++) {
 int index = i + (0*kCardsInSuit);
 printf("(%2d)" , index+1);
 PrintCard(&(pDeck[index]));
 index = i + (1*kCardsInSuit);
 printf(" (%2d)" , index+1);
 PrintCard(&(pDeck[index]));

 index = i + (2*kCardsInSuit);
 printf(" (%2d)" , index+1);
 PrintCard(&(pDeck[i + (2*kCardsInSuit)]));

 index = i + (3*kCardsInSuit);
 printf(" (%2d)" , index+1);
 PrintCard(&(pDeck[index]));

 printf("\n");
 }
 printf("\n\n");
}

Creating and Using More Complex Structures Chapter 16

[361]

The first two printf() calls provide some information about the deck. Then, we see the
same kind of loop as we have in InitializeDeck(). For each suit, the following three
statements are executed:

Compute the index into the deck array from the loop index and a suit1.
multiplier.
Print the number of the card in the deck. Note here the one-off adjustment from a2.
zero-based array index to a natural counting number (that darn one-off issue
again).
Call PrintCard() to print the card.3.

A <newline> character is printed after each of the four cards are printed. Finally, two new
lines are printed after the loop iterations are complete.

Add this function to the end of carddeck_1.c. Save the file, and then compile and run it.
You should see the following output:

Creating and Using More Complex Structures Chapter 16

[362]

The main reason we are printing out the entire deck along with each card's position in the
deck array is to verify our deck initialization routine. Each routine proves the validity of the
other. When this program was being developed, both routines were developed in tandem
so that any errors could be caught and fixed as early as possible.

So, let's quickly review what we did to carddeck_1.c:

We created a deck of cards from an array of Card structures.1.
We added some convenience constants to name and thereby eliminate magic2.
numbers from being sprinkled throughout our program.
We created a function to initialize our deck of cards array.3.
We created a function to print our deck of cards.4.
We verified that we have a valid deck of properly initialized cards.5.

Now that we know that we have a properly initialized deck of cards, we can move on to do
more interesting things with it. We are not done with our deck, though; it will become an
even more complex structure. Before we get to that, however, let's expand on what we can
put into structures.

Using a structure with other structures
In card4.c from Chapter 10, Creating Custom Data Types with typedef, we saw a structure,
Hand, that contains another structure, Card. However, in that program, we accessed the
entire sub-structure. We assigned the hand.card sub-structure by copying an entire Card
structure to it. While this is convenient if we are dealing with complete substructures, we
also need to know how to access elements within the sub-structure of a structure.

Here, we are going to look at accessing sub-structure elements within a structure. Before we
begin our exploration, copy the carddeck_1.c file to carddeck_2.c. In carddeck_2.c,
we'll add the Hand structure with sub-structures and operations on Hand.

Creating a structure consisting of other
structures
We have already seen how to create a Hand structure that consists of the Card structures, as
follows:

typedef struct {
 int cardsDealt;

Creating and Using More Complex Structures Chapter 16

[363]

 Card card1;
 Card card2;
 Card card3;
 Card card4;
 Card card5;
} Hand;

Hand is a structure that represents a collection of cards dealt with that hand. In this
case, Hand contains five individual instances of a Card structure, each of them named
card1 through card5. The cardsDealt member variable allows us to keep track of how
many cards are in a hand.

Add the preceding structure definition to carddeck_2.c.

When you consider this structure, you might wonder why an array of Card structures is
not used instead. Since an array is a collection of identical times, an array might be more
appropriate than five named variables. In reality, using an array is an approach we will
take later. For now, we want to explore accessing structures within structures. In the next
section, after exploring structures within structures, we will then modify carddeck_2.c to
use arrays of structures.

Accessing structure elements within the
structure
We declare an instance of a Hand structure as follows:

Hand h1;

We can then access its sub-structure member elements and structures, as follows:

h1.cardsDealt = 0;
Suit s;
Face f;

h1.card5.suit = club;
h1.card5.face = ace;

s = h1.card5.suit;
f = h1.card5.face;

Creating and Using More Complex Structures Chapter 16

[364]

Note that the card5 sub-structure is accessed using dot (.) notation and that the elements
of card5 are also accessed using another level of dot (.) notation. In the example given, the
member values of card5 are first set to desired values. Then, those values are retrieved
from card5 and stored in the s and f variables, respectively.

Using a pointer to the Hand structure, h1, we access each substructure member element, as
follows:

Hand* pHand = &h1;

pHand->card5.suit = club;
pHand->card5.face = ace.

s = pHand->card5.suit;
f = pHand->card5.face;

Note that when accessing the sub-structure elements in this manner, the pointer points to
the structure and not the sub-structure. As before, in the example given, the member values
of card5 are first set to the desired values. Then, those values are retrieved from card5 and
stored in the s and f variables, respectively.

Alternatively, we could use a pointer not to the structure, but directly to the Card sub-
structure and access its elements, as follows:

Card* pCard = &h1.card5;

pCard->suit = club;
pCard->face = ace.

s = pCard->suit;
f = pCard->face;

Here, the pCard pointer points directly to the sub-structure. Note how the pointer to the
sub-structure is assigned. The address of the & operator has lower precedence than the dot
(.) operator so that h1.card5 is evaluated first and then the address of that Card sub-
structure is assigned to the pointer. The card5 elements are then accessed directly via the
pointer.

Using this method, we could reuse the Card function, InitializeCard(), as follows:

Card* pCard = &h1.card5;

InitializeCard(pCard , club , ace , kNotWildCard);

Creating and Using More Complex Structures Chapter 16

[365]

Note that by using a pointer directly to the sub-structure, we can use the functions we've
already created to operate on that sub-structure as if it were a standalone structure. Here,
card5 is a sub-structure of h1; by using a pointer to the sub-structure, we can call
InitializeCard(), regardless of what structure contains it.

Of the two methods given—one using a pointer to the structure containing the sub-
structure and the other using a pointer directly to the sub-structure—neither is necessarily
better than the other. However, because we have already created functions to manipulate a
Card structure, there is some benefit in reusing those methods that operate on a
Card structure, rather than the structure that contains them. One advantage of using those
methods is that they concentrate the knowledge about the internal members and their inter-
relationship in a single location—the InitializeCard() function.

Manipulating a structure consisting of other
structures
The operations we want to perform on a Hand structure include the following:

InitializeHand(): Sets the initial values of a Hand structure to a valid state
AddCardToHand(): Receives a dealt card from the deck to the hand
PrintHand(): Prints out the contents of the hand

With our current definition of Hand, we will need a way to determine which card in the
hand we want to manipulate. To do this, we need a function:

GetCardInHand(): Gets a pointer to a specific card within the hand. This
method is used by other Hand functions to both set card values within a hand
and to retrieve card values.

You can add the following function prototypes to carddeck_2.c:

void InitializeHand(Hand* pHand);
void AddCardToHand(Hand* pHand , Card* pCard);
void PrintHand(Hand* pHand , char* pHandStr , char* pLeadStr);
Card* GetCardInHand(Hand* pHand , int cardIndex);

Creating and Using More Complex Structures Chapter 16

[366]

Each of these methods takes a pointer to a Hand structure. We can now implement each of
these functions. With the current definition of Hand, there is not much to initialize, only the
number of cards dealt. So, InitializeHand() is as follows:

void InitializeHand(Hand* pHand) {
 pHand->cardsDealt = 0;
}

The cardsDealt structure member is set to 0 to indicate that the given hand is empty. We
should initialize the cards to some value, but we don't at this time. The cards will be
initialized when a card is added to the hand. With this approach, we have to be extra
cautious that we don't access a card in the hand that has not yet been initialized.

The GetCardInHand() function is given a pointer to a hand and an index. It then returns a
pointer to the desired card, as follows:

Card* GetCardInHand(Hand* pHand , int cardIndex) {
 Card* pC;
 switch(cardIndex) {
 case 0: pC = &(pHand->card1); break;
 case 1: pC = &(pHand->card2); break;
 case 2: pC = &(pHand->card3); break;
 case 3: pC = &(pHand->card4); break;
 case 4: pC = &(pHand->card5); break;
 }
 return pC;
}

In this function, a switch()… statement is used to determine from the index which card is
desired. Since the & and -> operators have the same precedence, we use () to make it clear
in the &(pHand->card1) expression what type of pointer is being returned.
pHand->card1 gets the Card structure and & gives the address of that Card structure.

Note that this is a zero-based index that works identically to the way we use indices in
arrays. This is intentional. Every time we use an index, regardless of its data type (or array
or element within a structure), we are using a zero-based index scheme. This is for mental
consistency. We don't have to try to remember when and for which data type we have a
zero- or one-based index scheme; they are all zero-based.

We can now implement the AddCardToHand() function. It takes a pointer to a
Hand structure and a pointer to a Card structure to be added to the hand, as follows:

void AddCardToHand(Hand* pHand , Card* pCard) {
 int numInHand = pHand->cardsDealt;
 if(numInHand == kCardsInHand) return;

Creating and Using More Complex Structures Chapter 16

[367]

 Card* pC = GetCardInHand(pHand , numInHand);
 InitializeCard(pC , pCard->suit , pCard->face , pCard->isWild);
 pHand->cardsDealt++;
}

The function first checks to see whether the hand is full by accessing the cardsDealt
member and checking whether it is equal to the kCardsInHand constant. If the hand is full,
the function returns and nothing more is done; in effect, the card is ignored. If the hand is
not full, we use numInHand as the index to the card in the hand to be added. We then call
InitializeCard() with the values from the Card pointer passed into the function.

Note that we are copying values from the deck into the hand. In essence, we have two of
the same card—one in the deck and another in our hand. This is not a good design; ideally,
we'd only want to ever have a single card that would be moved around from deck to hand.
We'll soon rectify this condition.

Finally, the cardsDealt member variable is incremented to indicate that a card was added
to the hand.

For PrintHand(), a string is passed to the function that will provide spacing before each
card is printed. Like other Hand functions, a pointer of the hand to be printed is passed to
the function, as follows:

void PrintHand(Hand* pHand , char* pHandStr , char* pLeadStr) {
 printf("%s%s\n" , pLeadStr , pHandStr);
 for(int i = 0; i < pHand->cardsDealt ; i++) {
 Card* pCard = GetCardInHand(pHand , i);
 printf("%s" , pLeadStr);
 PrintCard(pCard);
 printf("\n");
 }

In this function, a heading line is printed that contains the leading string and the hand-
name string. Then, a loop is used to print each Card structure that has been dealt with.
Within this loop, a pointer to the card is fetched, the leading string is printed,
PrintCard() is called to print the card, and finally, a new line is printed.

At this point, edit carddeck_2.c to include the Hand structure, as well as the four
functions to manipulate the Hand structure. Save the file and compile it. You shouldn't get
any compiler errors or warnings. We will make a few more changes to this file before we
run the program.

Creating and Using More Complex Structures Chapter 16

[368]

The first change to make is to the Hand structure so that it contains pointers to cards, rather
than copies of cards. The Hand structure is now as follows:

typedef struct {
 int cardsDealt;
 Card* pCard1;
 Card* pCard2;
 Card* pCard3;
 Card* pCard4;
 Card* pCard5;
} Hand;

Each card in a hand is now a pointer to a card created and initialized in the deck. With this
modification, we will now only have one instance of each card; each hand will simply point
to the appropriate card in our deck.

Since we have changed the Hand structure, we also need to change some aspects of the
functions that manipulate a hand. First, we need to do a little more work in
InitializeHand(), as follows:

void InitializeHand(Hand* pHand) {
 pHand->cardsDealt = 0;
 pCard1 = NULL;
 pCard2 = NULL;
 pCard3 = NULL;
 pCard4 = NULL;
 pCard5 = NULL;
}

Each pointer value is initialized to NULL. This approach has the added benefit of being able
to tell whether a card has been dealt just by checking whether the pointer is NULL.

Since we changed the structure member names from card<x> to pCard<x>, we need to
make the corresponding name changes in GetCardInHand(), as follows:

Card** GetCardInHand(Hand* pHand , int cardIndex) {
 Card** ppC;
 switch(cardIndex) {
 case 0: ppC = &(pHand->pCard1); break;
 case 1: ppC = &(pHand->pCard2); break;
 case 2: ppC = &(pHand->pCard3); break;
 case 3: ppC = &(pHand->pCard4); break;
 case 4: ppC = &(pHand->pCard5); break;
 }
 return ppC;
}

Creating and Using More Complex Structures Chapter 16

[369]

In this function, we don't return the pointer to a card, but rather the address of the variable
that contains that pointer. Therefore, we don't need pCard<x>, a pointer to one of the cards
in the hand; we need the address of that card pointer. We need a pointer to the pointer
variable so that we can change that pointer variable. To see why, change
the AddCardToHand() function, as follows:

void AddCardToHand(Hand* pHand , Card* pCard) {
 int numInHand = pHand->cardsDealt;
 if(numInHand == kCardsInHand) return;

 Card** ppC = GetCardInHand(pHand , numInHand);
 *ppC = pCard;
 pHand->cardsDealt++;
}

In this function, we want the pointer variable in our hand to point to the desired card in the
deck. In order to do this, we need the address of the pointer variable. This is double
indirection at work.

A conceptually simpler way to achieve the same result would be to write this function as
follows:

void AddCardToHand(Hand* pHand , Card* pCard) {
 int numInHand = pHand->cardsDealt;
 if(numInHand == kCardsInHand) return;

 switch(numInHand) {
 case 0: pHand->pCard1 = pCard; break;
 case 1: pHand->pCard2 = pCard; break;
 case 2: pHand->pCard3 = pCard; break;
 case 3: pHand->pCard4 = pCard; break;
 case 4: pHand->pCard5 = pCard; break;
 default: break;
 }
 pHand->cardsDealt++;
}

In this function, we do not need double indirection. Instead, we manipulate the appropriate
pointer element of our Hand structure. This requires much more code than that used for
double indirection. Remember, the main reason we are using the GetCardInHand()
function is because of the way the Hand structure is currently defined. For this iteration of
carddeck_2.c, we will use the double indirection method.

Creating and Using More Complex Structures Chapter 16

[370]

The next two changes to be made to carddeck_2.c will enable us to verify our current
changes by providing some useful output. The first of these changes is to add a new
method to our set of Deck functions—DealCardFromDeck()—as follows:

Card* DealCardFromDeck(Card deck[] , int index) {
 Card* pCard = &deck[index];
 return pCard;
}

This function takes a deck array and an index for the desired card in the deck.
Alternatively, we could have declared it as a pointer to Card, but we use array notation
here instead to indicate the underlying array of our current deck representation. The
function then returns a pointer to the requested Card structure in the given deck at the
given index.

Our last change is to put these new methods to use. Modify main(), as follows:

int main(void) {
 Card deck[kCardsInDeck];
 Card* pDeck = deck;
 InitializeDeck(&deck[0]);
 Hand h1 , h2 , h3 , h4;
 InitializeHand(&h1);
 InitializeHand(&h2);
 InitializeHand(&h3);
 InitializeHand(&h4);

 for(int i = 0 ; i < kCardsInHand ; i++) {
 AddCardToHand(&h1 , DealCardFromDeck(pDeck , i));
 AddCardToHand(&h2 , DealCardFromDeck(pDeck , i+13));
 AddCardToHand(&h3 , DealCardFromDeck(pDeck , i+26));
 AddCardToHand(&h4 , DealCardFromDeck(pDeck , i+39));
 }
 PrintHand(&h1 , "Hand 1:" , " ");
 PrintHand(&h2 , "Hand 2:" , " ");
 PrintHand(&h3 , "Hand 3:" , " ");
 PrintHand(&h4 , "Hand 4:" , " ");
}

Here, we declare and initialize our deck array as before. Then, four Hand structures are
declared and initialized. Next, using a loop, each hand is dealt cards to fill each one by
calling AddCardToHand(). Currently, the cards that are being dealt are not randomized.
Instead, we use suit offsets and the loop index to deal with the first five cards of each suit
to each hand. We will deal with random card selection in the next iteration of carddeck.c.
Finally, each hand is printed with calls to PrintHand().

Creating and Using More Complex Structures Chapter 16

[371]

In carddeck_2.c, make the changes to the Hand structure and the functions that
manipulate a hand. Add the function prototype and function definition for
DealCardFromDeck(). Finally, modify main() to create four hands, initialize them, add
cards to them, and print them out. Compile and run carddeck_2.c. You should see the
following output:

You can now see how the PrintHand() function uses the various parameters it takes to
print out each hand in a specific place on the console screen. Hand 1 holds the first five
cards from the spades suit, just as the other hands hold the first five cards from each of the
other suits.

In this iteration of carddeck.c, we have made the following changes:

Create a Hand structure consisting of Card structures.1.
Create functions to initialize a hand, add a card to a hand, print a hand, and get a2.
pointer to a specific card in a hand. In these functions, the cards were
manipulated as copies of cards in the deck.
Modify the Hand structure to use pointers to Card structures, rather than copies3.
of Card structures.
Modify each of the Hand functions to use pointers to match the new structure4.
definition.
Add the DealCardFromDeck() function to get a pointer to Card from the deck.5.
Modify main() to use the Hand structures and each of the Hand manipulation6.
functions.

Creating and Using More Complex Structures Chapter 16

[372]

We now have a deck with properly initialized cards and four hands that we can populate
with pointers to cards from our deck. The program is becoming more complex as well as
more complete. We'll soon have a complete card-dealing program.

Using a structure with arrays
We currently use an array of cards to represent a deck of cards. However, this
representation is not sufficient for things we still need to do to a deck of cards. Two
operations that are common to a deck of cards are first to shuffle the deck into a random
order, and second to properly deal out cards from the randomized deck. We'll need to keep
track of how many cards have been dealt and whether the deck is shuffled.

Our model for a deck of cards has just got a bit more complex. A single array representation
is no longer sufficient. We will create a new structure, Deck, to hold additional information
about our deck of cards as well as its shuffled or random state.

Before we begin defining this structure and operations on it, let's consider the
randomization (shuffling) of our deck of cards. We could randomize our deck array by
copying the structures in it from one index to another. However, since we now know about
pointers, we can put that knowledge to good use by employing another array to shuffle our
deck. This array will consist of pointers to each card in our deck. We will initialize the array
so that each pointer points to its ordered deck element; then, we will randomize the order
of the pointers in this secondary array. In order to do that, we first need to understand a
little about randomness and random number generators on computers.

Understanding randomness and random number
generators
A computer is a deterministic machine. This means that when we run a program, we get
the same result each time without variance. This consistent behavior is crucial to orderly
computation. We depend on consistency regardless of the day of the week, the weather, or
any other factor.

However, there are some cases where we need to simulate the random occurrence of
events. One obvious example of this is shuffling a deck of cards. It would be of little interest
to create a card game program that gives each player exactly the same cards each time they
play the game. On the other hand, randomness is pervasive in the real world—the weather,
rolling dice, even the fingerprints on our hands, are all unavoidable random events.

Creating and Using More Complex Structures Chapter 16

[373]

To get randomness on an otherwise non-random, deterministic machine, there are two
ways to achieve this. The first is via hardware; the best source of this is the static generated
by a purposely damaged sound-generating chip. This kind of device is truly random. Also,
this device is neither practical nor readily available on common computer systems. The
second way is to simulate randomness with a pseudorandom number generator (PRNG).

A PRNG is an algorithm that generates a very large sequence of numbers. This large
sequence is called its period, or the periodicity of the PRNG. This is the length of the
sequence of numbers it can generate before it repeats its sequence. The larger the
periodicity, the better the PRNG. Each time we ask the PRNG for a random number, it
actually gives us the next number in its sequence. Associated with a PRNGs periodicity is a
seed, or a starting point within its sequence of numbers. A seed is itself some type of
varying number that doesn't have to be nearly as random as the PRNG sequence. It could
be the number of seconds since 1970, the number of microseconds within the current
second, or the position of the disk head over a hard drive platter. The seed is our starting
point in the PRNG's sequence of numbers. In fact, if we used the same seed each time, we
would always get exactly the same sequence of numbers.

From this, we can surmise that there are two operations on a PRNG that are essential. First,
we must initialize the PRNG with a seed, or starting point, and second, we make repeated
calls to the PRNG to give us the next random number in its sequence.

Every computer system provides at least one PRNG that is readily available to the
programmer. However, PRNGs have been, and are still being, studied extensively because
of their importance in simulations of real-world events. There are many classes of PRNGs.
Not every PRNG is equally random from one call to the next, nor does every PRNG have
the same periodicity. Some PRNGs are simple while others are quite complex. The value a
PRNG returns may be an integer between 0 and some maximum value or it may be a
floating-point value between 0.0 and 1.0. We can then normalize that value into our
desired range of numbers.

On the other hand, not every problem requires the same level of randomness. Very often,
for simple games, a simple PRNG is adequate for the task. We will use the relatively simple
PRNG supplied in the C standard library by including stdlib.h in our program. We can
then initialize its PRNG with srand() and make subsequent calls to it with the rand()
function. It is common to initialize srand() with the current time by calling time().
time() returns the number of seconds since 1970 on Unix systems; therefore, this will be a
different number each time we run a program that uses it.

We will see how to use these functions in action when we shuffle our deck.

Creating and Using More Complex Structures Chapter 16

[374]

Creating a structure with an array
We will create a structure, Shuffled, which, for now, holds some information about the
state of our deck and an array of pointers to Card, which is our shuffled deck. We define
Shuffled as follows:

typedef struct {
 Card* shuffled[kCardsInDeck];
 int numDealt;
 bool bIsShuffled;
} Shuffled;

This gives an array of pointers to Card, the number of cards that have been dealt, and a
Boolean value to indicate whether the deck has been shuffled.

Accessing array elements within a structure
We have already seen how to access individual elements within a structure with dot
(.) notation, or, if we have a pointer to the structure, with the arrow (->) notation. To
access an array element with a structure, we would use the same notation for individual
elements and simply add array notation ([]), as follows:

Shuffled aShuffled;
Shuffled* pShuffled = &aShuffled;

aShuffled.numDealt = 0;
aShuffled.bIsShuffled = false;
for(int i = 0 , i < kCardsInDeck; i++)
 aShuffled.shuffled[i] = NULL;

pShuffled->numDealt = 0;
pShuffled->bIsShuffled = false;
pShuffled->shuffled[i] = NULL;

We have declared a deck structure, aShuffled, and a pointer to a deck
structure, pShuffled, initializing it to the address of aDeck. The next three statements
access each element of aShuffled using dot (.) notation. The last three statements access
each element of pShuffled using arrow (->) notation.

We can now consider operations executed on our Shuffled structure.

Creating and Using More Complex Structures Chapter 16

[375]

Manipulating array elements within a structure
We already have a Deck array and two operations in it
InitializeDeck() and PrintDeck(). We now also have a Shuffled structure. We need
to add operations to perform on it, such
as InitializeShuffled() and PrintShuffled(). To this set of operations, we would
add the ShuffleDeck() function. The function prototypes for these would be as follows:

void InitializeShuffled(Shuffled* pShuffled , Deck[] pDeck);
void PrintShuffled(Shuffled* pShuffled);
void ShuffleDeck(Shuffled* pShuffled);

The InitializedShuffled() method is a bit different
from InitializeDeck() because the function needs to know about Deck when we
initialize our array of pointers. At this point, you might be wondering whether Deck and its
operations are somehow very closely related to Shuffled and its operations. The fact is,
they are. We will combine both the Deck and Shuffled data structures as well as these
operations in the final version of the carddeck.c program. Before we do this, however,
let's examine the ShuffleDeck() function.

To shuffle our deck of cards, we will—for now—assume that shuffled[] has been
initialized such that the first element of shuffled[o] points to the first element of
deck[0], the second element of shuffled[1] points to the second element of deck[1],
and so on, such that shuffled[] is in the same order as deck[]. We will first initialize our
PRNG and then loop through each element of the array. At each iteration, we will call
rand() to get the next random number and normalize that number into a range between 0
and 51 (the number of cards in our deck). This will be a random index in our shuffled
array. We'll then swap the pointer at the current index with the pointer at the random
index. This function is as follows:

void ShuffleDeck(Shuffled* pDeck) {
 long randomIndex;
 srand(time());

 Card* pTempCard;
 for(int thisIndex = 0 ; thisIndex < kCardsInDeck ; thisIndex++) {
 randomIndex = rand() % kCardsInDeck; // 0..51
 // swap
 pTmpCard = pDeck->shuffled[thisIndex];
 pDeck->shuffled[thisIndex] = pDeck->shuffled[randomIndex];
 pDeck->shuffled[randomIndex] = pTmpCard;
 }
 pDeck->bIsShuffled = true;
}

Creating and Using More Complex Structures Chapter 16

[376]

First, we declare randomIndex and then initialize our PRNG with a call to time(). In
order to swap two values, we use a third value, pTempCard, as a placeholder. Upon each
iteration through shuffled[], we get the next random number, use modulo to get a value
between 0 and 51, and then perform the swap operation in three statements. Finally, we
update the bIsShuffled status variable to reflect the fact that we now have a shuffled
array of cards.

We can see that accessing an array of simple data types within a structure is very similar to
accessing any member element within a structure. We simply add an array notation to the
structure's array name as needed.

Copy carddeck_2.c into carddeck3.c. For the remainder of this chapter, we will modify
carddeck_3.c. For now, add the stdlib.h and time.h header files to our program to
access rand(), srand(), and time().

We will modify our Hand structure to use an array of pointers to Card structures. This will
simplify operations on a Hand as well as eliminate the need for
the GetCardInHand() function.

Revisiting the hand structure
In carddeck_2.c, we used named member variables for cards in the Hand structure. This
meant we needed a function to get a pointer to a specific card. While possible, that turned
out to be cumbersome. Recall that when all variables are of an identical type and you have
a collection of them, an array should immediately come to mind. So, we will rework the
definition of our Hand structure to use an array of pointers to Card, as follows:

typedef struct {
 Card* hand[kCardsInHand];
 int cardsDealt;
} Hand;

We still have five cards, but they are now contained in an array, and we still have
cardsDealt to keep track of how many cards are in our hand.

As you will see, this will simplify our Hand operations.

Creating and Using More Complex Structures Chapter 16

[377]

Revisiting hand operations
Because we changed this structure definition, we will have to only slightly modify
the Hand operations. Fortunately, none of the function prototypes will need to change:

In carddeck_3.c, modify the InitializeHand() function, as follows:1.

void InitializeHand(Hand* pHand) {
 pHand->cardsDealt = 0;
 for(int i = 0; i < kCardsInHand ; i++) {
 pHand->hand[i] = NULL;
 }
}

We can now use a loop to set each of our Card pointers in the hand[] array to
NULL.

Next, we can simplify the AddCardToHand() function because we no longer2.
need the GetCardInHand() method, as follows:

void AddCardToHand(Hand* pHand , Card* pCard) {
 if(pHand->cardsDealt == kCardsInHand) return;
 pHand->hand[pHand->cardsDealt] = pCard;
 pHand->cardsDealt++;
}

As before, we first check whether our hand is full. Then, we simply set the pointer
value to the given Card structure to the appropriate array element. As before, the
cardsDealt member variable is incremented.

Also, the PrintHand() function no longer needs to use the GetCardInHand()3.
function, as follows:

void PrintHand(Hand* pHand , char* pHandStr , char* pLeadStr) {
 printf("%s%s\n" , pLeadStr , pHandStr);
 for(int i = 0; i < kCardsInHand ; i++) { // 1..5
 printf("%s" , pLeadStr);
 PrintCard(pHand->hand[i]);
 printf("\n");
 }
}

Because the cards in the hand are in an array, we can simply access pointers to
them via array notation. Otherwise, this function is identical to its earlier version.
GetCardInHand() is no longer needed. Both its prototype and definition can be
deleted from carddeck_3.c.

Creating and Using More Complex Structures Chapter 16

[378]

Finally, we will put our collection of four hands into an array of pointers to Hand.4.
We can then create a PrintAllHands() function, as follows:

void PrintAllHands(Hand* hands[kNumHands]) {
 PrintHand(hands[0] , "Hand 1:" , " ");
 PrintHand(hands[1] , "Hand 2:" , " ");
 PrintHand(hands[2] , "Hand 3:" , "
");
 PrintHand(hands[3] , "Hand 4:" , " ");
}

Each element of the hands[] array contains a pointer to a Hand structure. We can,
therefore, simply use the array and index to call PrintHand() for each of our hands.
Remember to add the PrintAllHands() function prototype to carddeck_3.c. Save and
compile the program. You should get an identical output to that of carddeck_2.c in the
previous section.

Using a structure with an array of structures
Because a deck of cards and a shuffled deck of cards are so similar, it makes somewhat
more sense to combine them into a single structure, rather than have to declare and
manipulate them separately. Our final Deck structure will consist of two arrays—one of an
ordered set of cards and another of pointers to cards in that deck, which can then be
shuffled as needed. We will add additional information to the Deck structure to keep track
of whether the deck is shuffled and how many cards have been dealt.

As we enhance our Deck structure and create/modify operations on the new structure, you
should notice how little any of the other structures and methods already created will need
to be changed, if at all.

Creating a structure with an array of structures
In earlier versions of carddeck.c, we represented a deck of cards with a simple array of
structures. Now that we need to shuffle the deck and keep track of other information about
the deck, it makes sense to make our Deck structure a combination of an array of Card
structures and an array of pointers to Card structures, as well as other information about
the deck.

Creating and Using More Complex Structures Chapter 16

[379]

Consider the following definition of a new Deck structure:

typedef struct {
 Card ordered[kCardsInDeck];
 Card* shuffled[kCardsInDeck];
 int numDealt;
 bool bIsShuffled;
} Deck;

The ordered member array will contain the initialized and ordered Card structures. Once
initialized, the ordered array elements will not be modified. Instead of moving cards
around in the ordered array, we will use another array, shuffled, which is a collection of
pointers to cards in the ordered array. We will rely on the bIsShuffled member
variable to indicate when the deck has been shuffled.

This new definition collects various types of complex information into a single, somewhat
more complex structure. We will see how this makes our program organization and logic
more cohesive.

Before we delve into modifying operations on the Deck structure, let's explore how to
access the various elements and sub-elements within the Deck structure.

Accessing individual structure elements of the
array within a structure
Accessing structure elements and sub-elements is a matter of layering access from the
topmost, or outer structure elements, to the bottommost, or inner sub-structure elements.
We have already seen simpler versions of this in the earlier sections of this chapter.

We must, however, be mindful of the data type of the sub-element being accessed. In
particular, we must pay attention to whether the member element is a direct intrinsic type
or structure or whether it is a pointer to another intrinsic type or structure. Being clear
about differentiating member elements and pointer elements determines which notation is
required—dot (.) or arrow (->) notation.

Given the preceding definition of Deck, consider the following access to each of its various
elements and sub-elements:

Deck deck;

deck.cardsDealt = 0;
deck.bIsShuffled = false;
deck.shuffled[0] = NULL;

Creating and Using More Complex Structures Chapter 16

[380]

deck.ordered[3].suit = spade;
deck.ordered[3].face = four;

deck.shuffled[14] = &(deck.ordered[35]);
(deck.shuffled[4])->suit = heart;
(deck.shuffled[14])->face = two;

Suit s = deck.ordered[3].suit;
Face f = deck.ordered[3].face;

s = (deck.shuffled[14])->suit;
f = (deck.shuffled[14])->face;

The deck variable is declared as a Deck structure. The next two statements set two
elements of the structure. Next, the zeroth element of the shuffled array is set to NULL.
Then, the sub-elements of the fourth Card structure element are set.

The next statement sets the 14th pointer element of shuffled to the address of the 35th

structure element of the ordered array. The next two statements access, via the pointer
contained in the 14th element of shuffled, the suit and face elements, which are actually
the sub-elements of the 35th array structure in ordered.

The last four statements show how to retrieve sub-element values.

Now, consider how to access the sub-elements of the Deck structure via a pointer to
the Deck structure in the following statements:

Deck anotherDeck
Deck* pDeck = &anotherDeck;

pDeck->cardsDealt = 0;
pDeck->bIsShuffled = false;
pDeck->shuffled[3] = pDeck

pDeck->shuffled[14] = &(deck.ordered[31]);
(pDeck->shuffled[14])->suit = heart;
(pDeck->shuffled[14])->face = two;

Suit s = pDeck->ordered[3].suit;
Face f = pDeck->ordered[3].face;

s = (pDeck->shuffled[14])->suit;
f = (pDeck->shuffled[14])->face;

Creating and Using More Complex Structures Chapter 16

[381]

Each of these statements—which are indirect references via a pointer to a Deck
structure—has the identical effect of accessing sub-elements as the previous set of direct
references to the same sub-elements.

Manipulating a structure with an array of
structures
So, a question regarding when to use direct references versus using an indirect reference
may come to mind. This is a very pertinent question. Unfortunately, there is no obvious
answer or one that must be strictly obeyed.

In general, however, whenever a structure is declared in a function block and its elements
are accessed within that function block, direct references typically make the most sense. On
the other hand, when structures are declared in one function block and then manipulated
by another function block, it is typically best to use indirect references (pointers) to them in
the manipulating function called.

With this in mind, we can now redefine the prototypes to the Deck manipulation
operations, as follows:

void InitializeDeck(Deck* pDeck);
void ShuffleDeck(Deck* pDeck);
Card* DealCardFromDeck(Deck* pDeck);
void PrintDeck(Deck* pDeck);

In each case, the Deck structure is not copied into and back out of the functions. Instead, a
pointer to the already existing structure variable is passed into each manipulating function.

We will revisit each of these functions in the remainder of this chapter.

Completing carddeck.c
In this section and its sub-sections, we will complete carddeck.c so that it creates a deck
of cards using our new Deck structure, shuffle the deck, create four hands, and deal five
shuffled cards to each hand. To verify our work, we will print the deck and the hands out at
various stages of the program's execution.

Creating and Using More Complex Structures Chapter 16

[382]

Revisiting the deck structure
To carddeck_3.c, add the definition for the Deck structure, as follows:

typedef struct {
 Card ordered[kCardsInDeck];
 Card* shuffled[kCardsInDeck];
 int numDealt;
 bool bIsShuffled;
} Deck;

This is the complex Deck structure that we described earlier.

Revisiting deck operations
Since we now have a complex Deck structure, we must revisit each of the functions that
operate on a deck:

The first of these is InitializeDeck(). Modify InitializeDeck(), as1.
follows:

void InitializeDeck(Deck* pDeck) {
 Face f[] = { two , three , four , five , six , seven ,
 eight , nine , ten , jack , queen , king , ace };
 Card* pC;
 for(int i = 0 ; i < kCardsInSuit ; i++) {
 pC = &(pDeck->ordered[i + (0*kCardsInSuit)]);
 InitializeCard(pC , spade , f[i], kNotWildCard);
 pC = &(pDeck->ordered[i + (1*kCardsInSuit)]);
 InitializeCard(pC , heart , f[i], kNotWildCard);

 pC = &(pDeck->ordered[i + (2*kCardsInSuit)]);
 InitializeCard(pC , diamond , f[i], kNotWildCard);
 pC = &(pDeck->ordered[i + (3*kCardsInSuit)]);
 InitializeCard(pC , club , f[i], kNotWildCard);
 }
 for(int i = 0 ; i < kCardsInDeck ; i++) {
 pDeck->shuffled[i] = &(pDeck->ordered[i]);
 }
 pDeck->bIsShuffled = false;
 pDeck->numDealt = 0;
}

Creating and Using More Complex Structures Chapter 16

[383]

We use the same lookup array as we did before. We use the same loop that
initialized four cards for each iteration through the loop. The only difference in
this loop is how we use the card in the ordered array, with &(pDeck->ordered[
i + (0*kCardsInSuit)]).

Next, we initialize the shuffled array to have pointers to cards in the same2.
order as in ordered. The deck is not yet shuffled, but it is initialized. Lastly, we
set bIsShuffled to false and numDealt to 0. The deck is now properly
initialized.

To shuffle our deck, we are actually only going to change the order of the pointers
in shuffled. Create the ShuffleDeck() function, as follows:

void ShuffleDeck(Deck* pDeck) {
 long randIndex;
 srand(time(NULL)); // Seed our PRNG using time() function.
 // Because time() ever increases, we'll get
a
 // different series each time we run the
 // program.

 Card* pTmpCard;

 // Now, walk through the shuffled array, swapping the pointer
 // at a random card index in shuffuled with the pointer at the
 // current card index.

 for(int thisIndex = 0 ; thisIndex < kCardsInDeck ; thisIndex++)
{
 // get a random index
 randIndex = rand() % kCardsInDeck; // get next random number
 // between 0..52
 // swap card pointers between thisIndex and randIndex
 pTmpCard = pDeck->shuffled[thisIndex];
 pDeck->shuffled[thisIndex] = pDeck->shuffled[randIndex];
 pDeck->shuffled[randIndex] = pTmpCard;
 }
 pDeck->bIsShuffled = true;
}

In this, the randIndex function will be a randomly generated number between 0
and 51. After initializing our PRNG with srand(), we loop through all 52 cards.
At each iteration, we get the index of a random card pointer and swap that
pointer value with the current index of the loop counter. As you will see, this does
exactly what we need. Finally, we set bIsShuffled to true.

Creating and Using More Complex Structures Chapter 16

[384]

Modify DealCardFromDeck(), as follows:3.

Card* DealCardFromDeck(Deck* pDeck) {
 Card* pCard = pDeck->shuffled[pDeck->numDealt];
 pDeck->shuffled[pDeck->numDealt] = NULL;
 pDeck->numDealt++;
 return pCard;
}

In this version of DealCardFromDeck(), we use the numDealt member variable
as the index of the next card pointer to be dealt or returned from the function.
Notice that the pointer at that index is set to NULL to ensure we don't deal that
card again. Next, numDealt is incremented to the top of the deck or the next
available card. Finally, pCard, the pointer to the dealt card, is returned to the
caller.

Finally, modify the PrintDeck() function, as follows:4.

void PrintDeck(Deck* pDeck) {
 printf("%d cards in the deck\n" , kCardsInDeck);
 printf("Deck %s shuffled\n", pDeck->bIsShuffled ? "is" : "is
not");
 printf("%d cards dealt into %d
hands\n",pDeck->numDealt,kNumHands);

 if(pDeck->bIsShuffled == true) { // Deck is shuffled.
 if(pDeck->numDealt > 0) {
 printf("The remaining shuffled deck:\n");
 } else {
 printf("The full shuffled deck:\n");
 }
 for(int i=pDeck->numDealt , j=0 ; i < kCardsInDeck ; i++ , j++
) {
 printf("(%2d)" , i+1);
 PrintCard(pDeck->shuffled[i]);
 if(j == 3) {
 printf("\n");
 j = -1;
 } else {
 printf("\t");
 }
 }
 } else { // Deck is not
shuffled.
 printf("The ordered deck: \n");
 for(int i = 0 ; i < kCardsInSuit ; i++) {
 int index = i + (0*kCardsInSuit);

Creating and Using More Complex Structures Chapter 16

[385]

 printf("(%2d)" , index+1);
 PrintCard(&(pDeck->ordered[index]));
 index = i + (1*kCardsInSuit);
 printf(" (%2d)" , index+1);
 PrintCard(&(pDeck->ordered[index]));
 index = i + (2*kCardsInSuit);
 printf(" (%2d)" , index+1);
 PrintCard(&(pDeck->ordered[i + (2*kCardsInSuit)]));
 index = i + (3*kCardsInSuit);
 printf(" (%2d)" , index+1);
 PrintCard(&(pDeck->ordered[index]));
 printf("\n");
 }
 }
 printf("\n\n");
}

The PrintDeck() function is now used to print the deck in a few different ways.
We have already seen various parts of this function. First, it prints out some
information about the current state of the deck. Next, it determines whether the
deck is shuffled. If the deck is shuffled, it prints out either the full deck (no cards
dealt) or the remaining, undealt portion of the deck. If the deck is not shuffled, it
prints out the ordered deck of cards.

Congratulations! You should now be familiar with every syntax element in this rather
complex function. You may consider this a complete review of everything you have learned
up to this point.

This function will be called several times to verify all parts of our program.

A basic card program
Now that we have all of our new structures and modifications to the functions that operate
on them, we are now ready to put everything into play, so to speak. Modify the
main() function routine in carddeck_3.c, as follows:

int main(void) {
 Deck deck;
 Deck* pDeck = &deck;
 InitializeDeck(pDeck);
 PrintDeck(pDeck);
 ShuffleDeck(pDeck);
 PrintDeck(pDeck);
 Hand h1 , h2 , h3 , h4;
 Hand* hands[] = { &h1 , &h2 , &h3 , &h4 };

Creating and Using More Complex Structures Chapter 16

[386]

 for(int i = 0 ; i < kNumHands ; i++) {
 InitializeHand(hands[i]);
 }

 for(int i = 0 ; i < kCardsInHand ; i++) {
 for(int j = 0 ; j < kNumHands ; j++)
 {
 AddCardToHand(hands[j] , DealCardFromDeck(pDeck));
 }
 }
 PrintAllHands(hands);
 PrintDeck(pDeck);
}

Does it come as a surprise how few lines of code in main() are needed to express all of the
work that the program is doing? This was achieved through the use of our manipulation
functions. Let's walk through it:

First, we declare a deck and a pointer to that deck. Next, the deck is initialized1.
with a call to InitializeDeck() and the deck is printed. When you edit, save,
compile, and run this program, you should see the first deck print out as follows:

Creating and Using More Complex Structures Chapter 16

[387]

Then, the deck is shuffled with a call to ShuffleDeck() and printed again. You2.
should see the second deck print out something like the following:

The order of your cards will be different because of our use of a PRNG. Examine
the cards closely to be certain that they are all there, that there are no duplicates,
and that they are, in fact, shuffled.

Next, four hands are declared and then grouped into an array of pointers to each3.
hand. With a simple loop, InitializeHand() is called for each of them. Next, a
nested loop is used to deal cards to each hand. The i index will deal five cards to
each hand and the j index of the inner loop distributes the card to the proper
hand, in turn. Notice how the return value from DealCardsFromDeck() is used
as the input parameter to AddCardToHand().

Creating and Using More Complex Structures Chapter 16

[388]

Finally, all the hands are printed with a call to PrintAllHands() and the final4.
call to PrintDeck(). You should now see something like the following:

Just as in earlier versions of carddeck.c, this version consisted of a number of additions
and modifications:

Modify the Hand structure using an array of pointers to Card.1.
Modify the Hand manipulation functions.2.
Add a new function to print all hands in an array of pointers to hands.3.
Create a complex Deck structure.4.
Modify the Deck manipulation functions.5.
Use all of our structures and manipulation functions to shuffle a deck and deal to6.
our four hands.

Creating and Using More Complex Structures Chapter 16

[389]

At each stage of the program's development, we went from a known-good state to the next
known-good state with relevant output at each stage to verify our program's validity. In
this way, we were not only able to build our understanding of complex data structures and
operations on them, but we also gained some experience and insight into how program
development typically occurs. This approach is also referred to as stepwise refinement.

Summary
This chapter not only explored complex structures, but also reviewed nearly all the
concepts we've explored in previous chapters.

We learned about various ways to access arrays of structures, sub-structures within
structures, and arrays of structures within a structure. Each version of our carddeck.c
program included a review of what was changed in that version.

We also learned about PRNGs and used a system-supplied PRNG to shuffle our deck of
cards.

Throughout this chapter, we developed a complex program using stepwise refinement as
we added structures and operations to these structures. More significantly, we got an in-
depth view of how a program might change over its development life cycle. When we add
or change structures, we also need to add or change the routines that manipulate those
structures. This chapter demonstrated the software development process first described in
Chapter 1, Running Hello, World!.

In the next two chapters, we will explore C's various memory allocation mechanisms.
Chapter 17, Understanding Memory Allocation and Lifetime, will provide a review of, and a
moderate expansion on, the methods we've used so far. It also prepares us for the following
chapter, Chapter 18, Using Dynamic Memory Allocation. This chapter while conceptually
challenging, paves the way for much more interesting and useful programming
algorithms.

3
Section 3: Memory

Manipulation
Every value or complex data type exists in memory. In this section, we will explore various
ways to create and manipulate memory. We'll also explore the life cycle of different kinds
of memory structures.

This section comprises the following chapters:

Chapter 17, Understanding Memory Allocation and Lifetime
Chapter 18, Using Dynamic Memory Allocation

17
Understanding Memory
Allocation and Lifetime

Every instance of a value—be it a literal, an intrinsic data type, or a complex data
type—exists in memory. Here, we will explore various ways in which memory is allocated.
The different mechanisms for memory allocation are called storage classes. In this chapter,
we will review the storage class we've been using thus far, that of automatic storage, as well
as introduce the static storage class. We will also explore the lifetime of each storage class,
as well as introduce the scope of a storage class—internal versus external storage.

After exploring automatic and static storage classes, this chapter paves the way for a special
and extremely flexible storage class—that of dynamic memory allocation. Dynamic
memory allocation is so powerful and flexible that it will be introduced in Chapter 18,
Using Dynamic Memory Allocation, with the creation and manipulation of a dynamic data
structure called a linked list.

Each storage class also has a specific scope or visibility to other parts of the program; the
scope of both variables and functions will be explored in Chapter 25, Understanding Scope.

The following topics will be covered in this chapter:

Defining storage classes
Understanding automatic versus dynamic storage classes
Understanding internal versus external storage classes
Exploring the static storage class
Exploring the lifetime of each storage class

Understanding Memory Allocation and Lifetime Chapter 17

[392]

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Defining storage classes
C provides a number of storage classes. These fall into the following two general categories:

Fixed storage allocation: Fixed storage allocation means that memory is
allocated in the location where it is declared. All fixed storage is named; we have
called these variable as identifiers, or just variables. Fixed storage includes both
the automatic storage class and the static storage class. We have been using
automatic storage for every variable thus far. When you declare a variable
and—optionally—initialize it, you are using automatic storage. We will
introduce static storage later in this chapter.
Dynamic storage allocation: Dynamic storage allocation means that memory is
allocated upon demand and is only referenced via a pointer. The pointer may be
a fixed, named pointer variable, or it may be a part of another dynamic structure.

Two properties of storage classes are their visibility—or scope—within a program or
statement block, and their lifetime, or how long that memory exists as the program runs.

Within the general category of fixed storage, there are the following two sub-categories:

Internal storage allocation: Internal storage is storage that is declared within the
context of a function block or compound statement; in other words, declared
between { and }. Internal storage has both limited scope and a limited lifetime.
External storage allocation: External storage is storage that is declared outside of
any function block. It has a much broader scope and lifetime than that of internal
memory.

We address each of these categories in turn.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Understanding Memory Allocation and Lifetime Chapter 17

[393]

Understanding automatic versus dynamic
storage classes
In all the preceding chapters, we have been using a fixed or named storage allocation. That
is, whenever we declared a variable or a structure, we gave that memory location a data
type and a name. This was fixed in position in our program's main routine and functions.
Once that named memory was created, we could access it directly via its name, or
indirectly with a pointer to that named location. In this chapter, we will specifically explore
the fixed storage classes in greater detail.

Likewise, whenever we declare a literal value—say, 52 or 13—the compiler interprets these
values and puts them directly into the code, fixing them in the place where they have been
declared. The memory that they occupy is part of the program itself.

In contrast, dynamic storage allocation is unnamed; it can only be accessed via pointers.
Dynamic memory allocation will be introduced and explored in the next chapter.

Automatic storage
Automatic storage means that memory is allocated by the compiler at precisely the point
when a literal value, variable, array, or structure is declared. A less obvious but well-
defined point is when a formal parameter to a function is declared. That memory is
automatically deallocated at specific and other well-known points within the program.

In all cases except literal values, when this storage class is allocated, it is given a name—its
variable name—along with its data type. Even a pointer to another, already allocated
memory location is given a name. When that memory is an element of an array, it is the
array name and its offset in the array.

Dynamic storage
In comparison to fixed storage, dynamic storage is a memory that is unnamed but is
accessed solely indirectly via pointers. There are special library functions to allocate and
deallocate dynamic memory. As we will see in the next chapter, we must take extra care to
keep track of the unnamed allocated memory.

Understanding Memory Allocation and Lifetime Chapter 17

[394]

Understanding internal versus external
storage classes
In the storage class of a fixed or named memory, C has explicit mechanisms to allocate that
memory. These correlate to the following four C keywords:

auto

static

register

extern

Note that the auto keyword represents the automatic storage class, and the static keyword
specifies the static storage class. We are currently interested in only the first two of these
mechanisms. These keywords precede a variable specification, as follows:

<storage class> [const] <data type> <name> [= <initial value>];

In this specification, the following applies:

<storage class> is one of the preceding four keywords.
[const] is an optional keyword to indicate whether the named memory can be
changed after initialization. If const is present, an initial value must be supplied.
<data type> is an intrinsic or custom data type.
<name> is the variable or constant name for the value and data type.
[= <initial value>] is an optional initial value or values to be assigned to
the named memory location. If const is present, the value in that memory
cannot be changed; otherwise, it can be reassigned another value.

When <storage class> is omitted, the auto keyword is assumed. So, all of our programs
up to this point have been using auto memory variables by default. Function parameters
are also auto memory variables and have all the same properties as those we explicitly
declare in the body of functions or in compound statements.

The register keyword was used in older versions of C to signal to the compiler to store a
value in one of the registers of the central processing unit (CPU) for very quick access to
that value. Compilers have become so much more sophisticated that this keyword is
ignored, except in some very specialized C compilers.

The extern keyword has to do with the scope of external variables declared in other files.
We will return to the use of this keyword in Chapter 25, Understanding Scope.

Understanding Memory Allocation and Lifetime Chapter 17

[395]

Internal or local storage classes
Not only have we been using automatic, fixed storage in all the preceding chapters, we
have also been using the sub-class of internal storage. Internal storage is a memory that is
allocated either with a compound statement (between { and }) or as a function parameter.

Internal memory includes loop variables that are allocated when the loop is entered and
deallocated when the loop is exited or completes.

Internal memory variables are only accessible within the compound statement where
they've been declared, and any sub-compound statement declared within that compound
statement. Their scope is limited to their enclosing { and }. They are not accessible from
any other function or any function that calls them. Therefore, they are often referred to as
a local memory because they are strictly local to the code block within which they are
declared.

Consider the following function:

double doSomething(double aReal, int aNumber) {
 double d1 = aReal;
 double d2 = 0.0 ;
 int n1 = aNumber;
 int n2 = aNumber * 10 ;

 for(int i = 1; i < n1 , i++) {
 for(int j = 1; j < n2 ; j++ {
 d1 = i / j;
 d2 + = d1;
 }
 }
 return d2;

This function consists of two function parameters and a return value. It also contains within
its function body four local variables and two looping variables. This function might be
called with the following statement:

double aSum = doSomething(2.25 , 10);

When the function is called, the aReal and aNumber automatic local variables are allocated
and assigned (copied) the values of 2.25 and 10, respectively. These variables can then be
used throughout the function body. Within the function body, the d1, d2, n1, and
n2 variables are automatic local variables. They, too, can be used throughout the function
body.

Understanding Memory Allocation and Lifetime Chapter 17

[396]

Lastly, we create the loop with the i loop-local variable, where i is only accessible within
its loop block. Within that block is another loop with the j loop-local variable, where both
j and i, and all other function-local variables, are accessible. Finally, the function returns
the value of d2.

In the calling statement, the function assigns the value of the d2 function-local variable to
the aSum automatic variable. At the completion of doSomething(), all of the memory
allocated by that function is no longer accessible.

External or global storage classes
External storage is memory that is declared outside of any function body, including
main(). Such variables can potentially be accessed from any part of the program. These are
more often called global variables because they are globally accessible from within the file
where they are declared.

One advantage of global variables is their ease of accessibility. However, this is also their
disadvantage. When a variable can be accessed from anywhere, it becomes increasingly
difficult as a program grows in size and complexity to know when that variable changed
and what changed it. Global variables should be used sparingly and with great care.

The lifetime of automatic storage
When we consider the various storage classes, not only do we consider when they are
created and accessed, but we must also consider when they are deallocated or destroyed.
This is their lifetime—from creation to destruction.

Automatic, internal variables are created when the variable is declared either in the body of
a compound statement or in a function's formal parameter list. Internal variables are
destroyed and no longer accessible when that compound statement or function is exited.

Consider the doSomething() function. The aReal, aNumber, d1, d2, n1, and n2
variables are created when the function is called. All of them are destroyed after the
function returns its d2 value. The i loop variable is created when we enter the loop and is
destroyed when we exit that outer loop. The j variable is created at each iteration of the
outer loop controlled by i and destroyed at the completion of the inner loop controlled by
j.

Local variables have a lifetime that is only as long as the compound statement in which
they are declared.

Understanding Memory Allocation and Lifetime Chapter 17

[397]

Automatic, external variables are created when the program is loaded into memory. They
exist for the lifetime of the program. When the program exits (the main() function block
returns), they are destroyed.

Exploring the static storage class
Sometimes, it is desirable to allocate memory in such a way that it can hold a value beyond
the lifetime of automatic memory variables. An example of this might be a routine that
could be called from anywhere within a program that returns a continuously increasing
value each time it is called, such as a page number or a unique record identifier.
Furthermore, we might want to give such a function a starting value and increment the
sequence of numbers from that point. We will see how to do each of these.

Neither of these can be achieved easily with automatic storage classes. For this, there is the
static storage class. As with the automatic storage class, it can exist as both internal and
external storage.

Internal static storage
When a variable is declared within a function block with the static keyword, that variable
is accessible only from within that function block when the function is called. The initial
value of the static value is assigned at compile time and is not re-evaluated at runtime.
Therefore, the value assigned to the static variable must be known at compile time and
cannot be an expression or variable.

Consider the following program:

#include <stdio.h>

void printHeading(const char* aHeading);

int main(void) {
 printHeading("Title Page");
 printHeading("Chapter 1 ");
 printHeading(" ");
 printHeading(" ");
 printHeading("Chapter 2 ");
 printHeading(" ");
 printHeading("Conclusion");
}

void printHeading(const char* aHeading) {

Understanding Memory Allocation and Lifetime Chapter 17

[398]

 static int pageNo = 1;
 printf("%s \t\t\t Page %d\n" , aHeading , pageNo);
 pageNo++;
}

The printHeading() function contains the pageNo static variable. pageNo has 1 as its
initial value when the program is started. When printHeading() is called, the given
heading string is printed along with the current page number value. pageNo is then
incremented in preparation for the next call to it.

Create a file called heading.c and enter the preceding program. Compile and run this
program. You should see the following output:

The value of the static memory is incremented and preserved even after the function exits.

Now, consider what would happen if the static keyword was removed. Do that—remove
the static keyword. Compile and run the program. You should see the following output:

In this case, the automatic variable is initialized each time the function is called, and we
never see the incremented value because it is destroyed when the function exits.

Understanding Memory Allocation and Lifetime Chapter 17

[399]

External static storage
Because an internal static variable can only be initialized by the compiler, we need another
mechanism to safely store a value that we might want to initialize, or seed, ourselves. For
this, we can use an external static variable.

External static variables can only be accessible by any other variable or code block,
including function blocks, within the file where it is declared. Ideally, then, the code for the
external static variable and the function that accesses it should be in a single, separate .c
file, as follows:

// seriesGenerator.c

static int seriesNumber = 100; // default seed value

void seriesStart(int seed) {
 seriesNumber = seed;
}

int series(void) {
 return series++;
}

To use these functions, we would need to include a header file with function prototypes for
it, as follows:

// seriesGenerator.h

void seriesStart(int seed);
int series(void);

We would create the seriesGenerator.c and seriesGenerator.h files with these
functions and prototypes. We would also have to add #include <seriesGenerator.h>
to any file that calls these functions. We would then compile these files, along with our
other source files, into a single executable file. We did this briefly in Chapter 10, Creating
Custom Data Types with typedef; we will explore this more fully in Chapter 24, Working with
Multi-File Programs.

This series generator, when compiled into the main program, would be initialized, or
seeded, with a call to seriesStart() with some known integer value. After that, each call
to series() would generate the next number in the series.

Understanding Memory Allocation and Lifetime Chapter 17

[400]

This pattern may seem familiar from the last chapter, Chapter 16, Creating and Using More
Complex Structures. There, we used srand() to seed our pseudorandom number generator
(PRNG), and then subsequently called rand() to get the next number in the
random sequence. You can now more clearly imagine how srand() and rand() would be
implemented using static external memory allocation.

The lifetime of static storage
The lifetimes for both internal and external static memory are the same. Static memory is
allocated when the program is loaded before any statements are executed. Static memory is
only destroyed when the program completes or exits. Therefore, the lifetime of static
memory is the same as the lifetime of the program.

Summary
In this chapter, we explored various storage classes, and, how memory is allocated. In
particular, we clarified automatic memory allocation, or fixed and named memory—the
method we've been using exclusively in all chapters prior to this chapter. In addition to
automatic memory allocation, we explored static memory allocation. With both of those
approaches, we distinguished between internal memory allocation—variables declared
within a compound statement or function parameters—and external memory
allocation—variables declared outside of any function. For each of these storage classes
(automatic internal, automatic external, static internal, and static external memory
allocation), we considered the lifetime of the memory—when that memory is destroyed
and no longer accessible.

We are now ready to explore in the next chapter the much more flexible storage class,
dynamic memory, which is unnamed and can only be accessed via pointer variables.
Dynamic memory techniques will put us at the threshold of very powerful dynamic data
structures.

18
Using Dynamic Memory

Allocation
Not all data can be allocated statically or automatically. Sometimes, the number of items to
be manipulated is not known beforehand; that number can only be known at runtime and
may vary from run to run, depending on external inputs (user input, files, and so on). In the
preceding chapter, we examined automatic and static memory allocation. We now stand on
the threshold of an incredibly powerful feature of C – dynamic memory allocation and
manipulation. Once we pass this threshold, many flexible dynamic data manipulations will
be available to us. We will briefly introduce many of these data structures and their uses in
this chapter.

As mentioned in the preceding chapter, dynamic memory is unnamed, so it can only be
manipulated via pointers. Furthermore, dynamic memory has a different lifetime than
either automatic or static memory.

The following topics will be covered in this chapter:

Acquiring an introductory understanding of the power and flexibility of dynamic
memory allocation
Learning how to allocate and release dynamic memory
Implementing a simple linked list dynamic data structure
Creating and using a dynamic function pointer
Becoming aware of various special considerations when using dynamic memory
Learning about some other important dynamic data structures

Let's get started!

Using Dynamic Memory Allocation Chapter 18

[402]

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Introducing dynamic memory
Do we always know exactly how many objects we will need to manipulate and allocate
memory for in a program? The answer is a resounding No!

Not every situation or program can be efficiently addressed using just automatic or static
memory. The number of objects may vary widely over the runtime of the program and
from one run to another of the same program. The number of objects may depend on inputs
from the user (covered in Chapter 20, Getting Input From the Command Line, and Chapter
21, Exploring Formatted Input), from one or more existing files (covered in Chapter 22,
Working with Files, and Chapter 23, Using File Input and File Output), another device, or even
from a network connection to a remote server.

Furthermore, some problems cannot be easily solved with simple automatic or static
memory. These types of problems include sorting algorithms, efficient searching and
lookup of large amounts of data, and many geometric and graph theory optimization
techniques. All of these are advanced programming topics. Dynamic memory opens the
doors to these fascinating and powerful algorithms.

Before we dive into dynamic memory allocation, let's examine the way C allocates all types
of memory in a program's memory space.

A brief tour of C's memory layout
It is now time to gain a cursory understanding of how C organizes memory when a
program is loaded and run. This discussion builds upon the Introduction to pointers section
in Chapter 13, Using Pointers. Consider the following diagram:

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Using Dynamic Memory Allocation Chapter 18

[403]

This is a very simple conceptual view of a program's memory space. The operating system
provides this space to the program when it is loaded to be run. The C runtime then divvies
up the memory given to it into segments, each for a specific use. It consists of the following
segments:

System memory: This consists of system memory and system programs, as well
as the addresses for all of the devices on the computer. This segment is
mapped for all running programs so that there is only ever one copy of the
system code in the overall system memory space. The system exclusively
manages this memory.
Program code: This is where the compiled program is loaded and executed.
Global and static memory: After the program is loaded, global and static
variables are allocated and initialized.

Using Dynamic Memory Allocation Chapter 18

[404]

The call stack: When your program makes a function call, its parameters, any
automatic variables declared within it, and its return value are allocated in this
segment or pushed onto the stack. The call stack grows from high memory to
lower memory, and then to the heap space, as one function calls another and that
function calls yet another. When a function returns, its memory is popped off the
stack (deallocated). Think of a stack of plates – you put a plate on top of the stack
one after the other; then, you take them off the stack one at a time in the reverse
order they were placed on the stack.
The heap: When your program allocates dynamic memory, it is allocated from
this segment. Heap space grows from low memory to higher memory, toward
the stack space. Most allocations here are done somewhat randomly using the
best fit allocation scheme. That is, the lowest available space is allocated, if
possible. When that memory is deallocated, it becomes available for other
allocations of the same or smaller size.

Each program lives in its own memory space. The system space is common to all programs.
After your program has been loaded into this memory space and the global and static
variables have been allocated, the system calls the main() function and begins execution.
When you call a function, execution jumps to the memory address of that function and
pushes its parameters, automatic variables, and return values onto the call stack. When the
function completes, it pops its memory off the stack and returns execution to the location in
the program space where it was called.

All dynamic memory allocations are made from within the heap segment of the program
memory space. Now, we will explore the mechanisms we can use to allocate and release
dynamic memory.

Allocating and releasing dynamic memory
Dynamic memory is allocated and released (deallocated) only at very explicit points by a
program. It doesn't happen automatically; it doesn't happen by accident or by chance. You
make this happen when you call specific C Standard Library calls to allocate and release
dynamic memory.

Using Dynamic Memory Allocation Chapter 18

[405]

Allocating dynamic memory
Memory allocation routines are declared in stdlib.h and are a part of the C Runtime
Library. There are two very similar allocation routines – malloc() and calloc() – which
are used to allocate a new block of memory from the heap. The main difference between
malloc() and calloc() is that calloc() clears the memory block it allocates, whereas
malloc() only does allocation. There is a third routine, realloc(), which is used to resize
an existing block of heap memory. These functions have the following prototypes:

void* malloc(size_t size);
void* calloc(size_t count , size_t size);

void* realloc(void *ptr , size_t size);

Somewhere in stdlib.h, size_t is defined as follows:

type unsigned int size_t;

Each of these functions returns a void* pointer to a block of memory in the heap space.
Recall that void* is a pointer type that is of an unknown or generic type; a pointer of
the void* type must be cast to the required pointer type before you can use that pointer.
Notice that malloc() takes a single size parameter, while calloc() takes the count
and size parameters.

If either function cannot find memory in the heap space, the returned pointer will be NULL.
It is good practice to check whether these routines were successful.

The following code shows how each allocates memory for a single Card structure:

Card* pCard1 = (Card*)malloc(sizeof(Card);
if(pCard1 == NULL) ... // out of memory error

Card* pCard2 = (Card*)calloc(1 , sizeof(Card);
if(pCard2 == NULL) ... // out of memory error

If we wanted to allocate memory for, say, five cards, we would use the following code:

Card* pHand1 = (Card)malloc(5 * sizeof(Card);
if(pHand1 == NULL) ... // out of memory error

Card* pHand2 = (Card*)calloc(5 , sizeof(Card);
if(pHand2 == NULL) ... // out of memory error

Using Dynamic Memory Allocation Chapter 18

[406]

In this second example, we are allocating space for five cards contiguously in dynamic
memory. This sounds like an array, doesn't it? Well, in fact, it is. Instead of an automatic
array declared with Card hand1[5] and Card hand2[5], both of which allocate blocks of
memory to hold five cards on the stack, pHand1 and pHand2 both point to contiguous
blocks of memory in the heap space.

Recall how array names and pointers to arrays are interchangeable. With these allocations,
we can now refer to individual cards in the heap space with pHand1[3] and pHand2[i].
This is simply astounding! We can access arrays in either the stack space or the heap space
using array notation or pointer notation. Examples of how to do this are provided in
the Accessing dynamic memory section.

In both examples, each call to allocate memory using calloc() or malloc() appears to be
interchangeable. So, why use one function over the other? Is one of these preferred over the
other? Before we can answer that, we need to know that calloc() both allocates memory
and initializes it to all zeros, while malloc() simply allocates the memory and leaves
initialization up to us. So, the simple answer is to prefer calloc() over malloc().

The realloc() function changes the size of the memory that's pointed to by ptr to the
given size, which may be larger or smaller than the original memory allocation. If size is
larger, the original contents are copied and the extra space is uninitialized. If size is
smaller, the original contents are truncated. If ptr is NULL, realloc() behaves exactly
like malloc(). As with malloc() and calloc(), the pointer returned by realloc()
must be cast to the required type before it can be used.

Releasing dynamic memory
When we are done with the heap memory we've allocated, we release it with a call to
free(). The free() function returns the allocated memory to the available heap pool of
memory. This call does not have to occur within the same function where the memory was
allocated. The prototype in stdlib.h for free() is as follows:

void free(void* ptr);

The pointer that's passed to free() must contain a value that originated from one of the
calls to malloc(), calloc(), or realloc(). There is no need to cast the void* pointer
argument. If ptr is NULL, free() does nothing.

Using Dynamic Memory Allocation Chapter 18

[407]

We would release the memory that was allocated in the previous subsection as follows:

free(pCard1);
free(pCard2);
free(pHand1);
free(pHand2);

These four statements release each block of memory we allocated earlier. Allocated
dynamic memory can be freed in any order; it does not have to be freed in the same order it
was allocated.

Accessing dynamic memory
Once we've allocated dynamic memory, we can access it via the pointer that's returned by
the allocation functions, as we would with any other pointer. With each of the previous
examples, we could use that dynamic memory as follows:

InitializeCard(pCard1 , spade , ace , kNotWild);
InitializeCard(pCard2 , heart , queen , kNotWild);

pCard1 and pCard2 are pointers to individual Card structures. Therefore, we can use them
just like we used the pointers in carddeck.c using automatic variables.

However, consider the following:

pHand1[3].suit = diamond;
pHand1[3].face = two;

for(int i = 0 ; i < kCardsInHand , i++) {
 PrintCard(&(pHand[i]));
}

Both pHand1 and pHand2 point to a contiguous block of memory that is equivalent to the
size of five Card structures. Using array notation, we set the suit and face structure
members of the fourth element via pHand1. The PrintCard() function takes a pointer to a
card structure, while pHand2 points to a block of Card structures. Array notation gives us
the individual cards in the block; we must then get the address of that card element and
pass it PrintCard(). We will see this in action when we rework (yet again!) our
cardDeck.c program in Chapter 20, Getting Input From the Command Line, and Chapter
24, Working with Multi-File Programs.

Rather than using arrays in heap memory, it is far more common to manipulate structures
individually, as we shall see when we explore the linked list dynamic structure in the next
section.

Using Dynamic Memory Allocation Chapter 18

[408]

The lifetime of dynamic memory
Heap memory has a lifetime that begins when the memory is allocated. Once allocated, that
memory exists until the free() function is called to release that memory. Allocating and
releasing memory is also called memory management within a program.

Alternatively, all memory is deallocated when the program exits, both in terms of fixed
memory and dynamic memory. It is generally considered a sloppy practice to ignore
memory management for dynamic memory, especially for large, complex programs or for
programs that are likely to run for a very long time.

Special considerations for dynamic
allocation
Dynamic memory allocation does not come without a cost. In this case, the cost is typically
conceptual complexity. This cost also takes the form of added management of heap
memory and awareness of the pitfalls of potential memory leaks.

To be honest, I should add that it may take some time to get your head around some of
these concepts. For me, some of them took me quite a while to grasp. The best way, I've
found, is to take a working program and alter it, see how it behaves, and then understand
why it did what it did. Assume nothing. Or, start with a minimal working program that
uses the mind-bending feature and then build upon it. Interact with your code; play with it.
No matter how you do it, you can't just think about it. You have to twist, poke, prod, and
cajole your code until you understand what it is doing. Otherwise, it is just guesswork.

Heap memory management
The amount or degree of heap memory management required in a program is a
consideration that depends on the complexity and expected runtime duration of that
program.

When heap memory is initialized at the start of a program and remains largely unchanged
after it is initialized, little heap management will be required. It may be acceptable to
simply let heap memory exist until the program exits. The free() function may never be
called in such a program.

Using Dynamic Memory Allocation Chapter 18

[409]

On the other hand, for programs whose complexity is large, or where heap memory is
heavily used, or where the runtime duration is hours, days, months, or even years, heap
management is essential. A program that controls, say, a banking system, a fighter jet, or a
petroleum refinery might have catastrophic consequences if the heap for that program is
not properly managed, causing the program to terminate abnormally. The bank may
suddenly show a pile of money in your account or take it all away from you; the fighter jet
may lose control while in flight and crash; the petroleum refinery may suddenly react
chaotically and explode. The discipline of software engineering exists primarily to make
such software systems both maintainable by various levels of programmers and extremely
reliable over the long lifespan of such systems.

For some data structures, such as a linked list, which we will explore in depth later in this
chapter, memory management is relatively straightforward. However, for others, memory
management may not be obvious. Each data structure and algorithm has its own set of
memory considerations to be addressed. When we ignore memory management or do not
address it fully, we might encounter a common dynamic memory problem known
as memory leaks.

Memory leaks
One of the main challenges of heap management is to prevent memory leaks. A memory
leak is when a block of memory is allocated and the pointer to it is lost so that it cannot be
released until the program quits. The following is a simple example of a memory leak:

Card* pCard = (Card*)calloc(1 , sizeof(Card);
...
pCard = (Card*)calloc(1 , sizeof(Card); // <-- Leak!

In this example, pCard first points to one block of heap memory and then is later assigned
to another. The first block of memory is allocated but, without a pointer to it, it cannot be
freed. To correct this error, call free() before reassigning pCard.

A more subtle leak is as follows:

struct Thing1 {
 int size;
 struct Thing2* pThing2
}

struct Thing1* pThing1 = (struct Thing1*)calloc(1 , sizeof(Thing1));
Thing1->pThing2 = (struct Thing2*)calloc(1 , sizeof(Thing2));
...
free(pThing1); // <-- Leak!

Using Dynamic Memory Allocation Chapter 18

[410]

In this example, we create the Thing1 structure, which contains a pointer to
another Thing2 structure. We allocate heap memory for Thing1, which is pointed to
by pThing1. We then allocate heap memory for Thing2, which is pointed to by
the pThing2 pointer element of Thing1. So far, so good, and we go on our merry way.

Later, we release pThing1. Uh oh! What happened to the pointer to pThing2? It's gone.
That means that whatever pThing2 pointed to cannot be accessed again. We just leaked the
memory of pThing2.

The correct way to release all of the memory of pThing1 is as follows:

free(pThing1->pThing2);
free(pThing1);

First, the free() function is called on pThing1, which is the pointer element of pThing2.
Then, and only then, can we release the memory of pThing1.

A third, equally subtle leak is as follows:

Card* CreateCard(...) {
 Card* pCard = (Card*) calloc(1 , sizeof(Card));
 InitializeCard(pCard , ...);
 return pCard;
}

In the CreateCard() function, memory for Card is allocated in the heap space, initialized,
and the pointer to it is returned. This is all fine and dandy.

Now, consider how this function might be called, as follows:

Card* aCard = CreateCard(...);
PrintCard(aCard);
aCard = CreateCard(...); // <-- Leak!
PrintCard(aCard);

This is similar but less obvious than the first memory leak example. Each time
the CreateCard() function is called, it allocates more heap memory. However, when it is
called multiple times, the pointer to the allocated memory may be overwritten as it is in the
sequence of CreateCard() and PrintCard(). The CreateCard() function has added the
burden on the caller of being responsible for either calling free() before reusing aCard or
to somehow keep track of the various pointer values that are returned, as follows:

Card* aCard = CreateCard(...);
PrintCard(aCard);
free(aCard);
aCard = CreateCard(...);

Using Dynamic Memory Allocation Chapter 18

[411]

PrintCard(aCard);
free(aCard)

Card* pHand = (Card*)calloc(5 , sizeof(Card*));
for(int i = 0 ; i<5 ; i++)
{
 pHand[i] = CreateCard(...);
 PrintCard(pHand[i]);
}
...
for(int i = 0 ; i<5 ; i++)
 free(pHand[i]);
free(pHand);

In the first group of statements, free() is called before aCard is assigned a new pointer to
the heap memory.

In the second group of statements, an array of five pointers to Card is allocated. Note that
this is not the same as allocating memory for five Card; CreateCard() does the allocation
for a Card one at a time in a loop. Using a loop, five cards are created in the heap space and
printed. Later, a loop is used to properly release the Card memory allocated
in CreateCard(), which is pointed to by each element of pHand. Finally, pHand (a block of
five pointers) is released.

Simply being aware of possible memory leaks and what might cause them goes a long way
when it comes to recognizing and preventing them from happening in the first place.

We will now explore a general, yet very useful, dynamic structure.

The linked list dynamic data structure
The most basic dynamic data structure is the linked list. A linked list is the basis for other
dynamic structures, such as stacks and queues. A stack conforms to the rules that each new
element must be added to the front of the list and that each element can only be removed
from the front of the list. A queue conforms to the rules that each new element must be
added to the back of the list and that each element can only be removed from the front of
the list.

We will implement a simple linked list and then test it from within the main() function.
Later, we will employ this list structure and its routines when we return to
our carddeck.c program in Chapter 24, Working with Multi-File Programs.

Using Dynamic Memory Allocation Chapter 18

[412]

Create a file called linklisttester.c. It is in this single file that we will create our linked
list structure, operations, and test code. Before we begin, consider the following diagram of
the linked list we will create:

A linked list consists of a header structure that contains information about the list, as well
as a link to the first element, or list node. Any link that is NULL signifies that it is the last list
node in the list. If the head structure has a NULL link, the list is empty. In the preceding
diagram, the linked list contains the link list header with four list nodes. Each node contains
a pointer to the next list node and a pointer to a data element. We must ensure that each
node has a non-NULL data pointer; otherwise, the node is not valid. The data element
could be a simple variable or a complex structure.

Linked list structures
It should be no surprise from our diagram of a linked list that we need two structures – a
linked list header structure and a list node structure. These are defined as follows:

typedef struct _Node ListNode;
typedef struct _Node {
 ListNode* pNext;
 ListData* pData;
} ListNode;

typedef struct {
 ListNode* pFirstNode;
 int nodeCount;
} LinkedList;

First, we define an arbitrary tag, struct _Node, as a ListNode structure. This is a naming
mechanism so that we can use the name ListNode in the following structure definition
with the members of struct _Node. The struct _Node tag contains a ListNode pointer
and a ListData pointer, both of which will be known henceforth as simple ListNode
custom types. We won't need to use struct _Node again. Our list will consist of zero or
more ListNode.

Using Dynamic Memory Allocation Chapter 18

[413]

Next, we define a heading for our linked list, LinkedList, which consists of a ListNode
pointer and an int element to keep track of the number of elements in our list. Note that
we don't need a temporary tag name after struct; this structure will only be known as a
LinkedList.

Note that the data portion of ListNode is a pointer to something called ListData. We will
redefine ListData as an int element, as follows:

typedef int ListData;

We're doing this so that we don't get bogged down in the unnecessary details of ListData.
Later, when we complete and validate our linked list code, we will change ListData for
our revised carddeck.c program so that it looks as follows:

typedef Card ListData;

This linked list code will work the same for pointers to int, as well as pointers to Card or
as a pointer to any other structure we want our list to contain. This is the power (or
confusion, depending on your perspective) of using typedef.

Declaring operations on a linked list
Now that we have the required data structures defined, we can declare operations on those
data structures. A data structure is defined by both the data it contains or represents and
the operations that can be performed on it. The operations we will need to perform in order
to manipulate a general linked list mechanism independently of the specific data contents
of the list are as follows:

Create a new LinkedList header that allocates and properly initializes the1.
header record.
Create a new ListNode element that allocates and properly initializes the node2.
element. Once created, the node still isn't part of the list.
Delete a node. This doesn't involve the list; typically, this will be done after a3.
node is removed from the list.
Insert a node either into the front or back of the list.4.
Remove a node either from the front or back of the list and return that node to5.
the caller.
Get the node from either the front or back of the list; this only observes the node6.
data – it does not change the list in any way.

Using Dynamic Memory Allocation Chapter 18

[414]

Determine whether the list is empty.7.
Determine the size of the list.8.
Print the list. This involves traversing the list and printing each node.9.
Print an individual node. This involves printing the ListData element of the10.
node. The function to print ListData needs to be specific to the type of
ListData. We will need a way to pass a print function as a parameter to this
operation.

These operations lead to the following function prototypes:

LinkedList* CreateLinkedList();
bool IsEmpty(LinkedList* pList);
int Size(LinkedList* pList);
void InsertNodeToFront(LinkedList* pList , ListNode* pNode);
void InsertNodeToBack(LinkedList* pList , ListNode* pNode);
ListNode* RemoveNodeFromFront(LinkedList* pList);
ListNode* RemoveNodeFromBack(LinkedList* pList);
ListNode* GetNode(LinkedList* pList , int pos);
ListNode* CreateNode(ListData* pData);
void DeleteNode(ListNode* pNode);
void PrintList(LinkedList* pList ,
 void (*printData)(ListData* pData));
void PrintNode(ListNode* pNode ,
 void (*printData)(ListData* pData));
void OutOfStorage(void);

As we go through the definitions of each of these operations, you may find it helpful to
refer to the diagram of the linked list. Try to identify how each pointer in the list is
manipulated in each function.

Here, we will add a CreateData() operation. It will be deferred to the final
implementation where the specific ListData type is known. At that point, we'll also define
the printListData function.

Notice the OutOfStorage() function. We don't know whether we'll ever need this
function. We will need it if the CreateXXX() function fails to allocate memory. It is
generally a good practice to provide some feedback when a program fails, as follows:

void OutOfStorage(void) {
 fprintf(stderr,"### FATAL RUNTIME ERROR ### No Memory Available");
 exit(EXIT_FAILURE);
}

Using Dynamic Memory Allocation Chapter 18

[415]

This is a simple function that does the following:

Prints an error message to a special output stream, stderr.
Exits the program with a non-zero exit value. The program exits immediately
and no further program execution is done. We will learn more about stderr in
Chapter 23, Using File Input and File Output.

We can now see how each operation is defined.

A new LinkedList header can be created as follows:

LinkedList* CreateLinkedList() {
 LinkedList* pLL = (LinkedList*) calloc(1 , sizeof(LinkedList));
 if(pLL == NULL) OutOfStorage();
 return pLL;
}

The calloc() function is used to allocate memory for the LinkedList header and
initialize all the values in the structure to 0; a pointer to that memory is returned unless
calloc() fails, in which case OutOfStorage() is called and the program stops. The
functions IsEmpty() and Size() are as follows:

bool IsEmpty(LinkedList* pList) {
 return(pList->nodeCount == 0);
}

and

int Size(LinkedList* pList) {
 return pList->nodeCount;
}

The IsEmpty() utility function returns true if the list is empty and false otherwise.

The Size() utility function simply returns the value of nodeCount. We use a function to
get this value rather than access it directly because the structure of LinkedList may need
to be changed. This approach encapsulates the size information, regardless of how it might
be implemented later.

Using Dynamic Memory Allocation Chapter 18

[416]

The next two functions define how a ListNode structure can be inserted into the list, as
follows:

void InsertNodeToFront(LinkedList* pList , ListNode* pNode) {
 ListNode* pNext = pList->pFirstNode;
 pList->pFirstNode = pNode;
 pNode->pNext = pNext;
 pList->nodeCount++;
}

The following is the second function:

void InsertNodeToBack(LinkedList* pList , ListNode* pNode) {
 if(IsEmpty(pList)) {
 pList->pFirstNode = pNode;
 } else {
 ListNode* pCurr = pList->pFirstNode ;
 while(pCurr->pNext != NULL) {
 pCurr = pCurr->pNext;
 }
 pCurr->pNext = pNode;
 }
 pList->nodeCount++;
}

To insert a ListNode into the front of the list, we only need to adjust two pointers,
pList->pFirstNode (saving it before we change it) and the new node's pNode->pNext
pointer. If the list is empty, pList->pFirstNode will be NULL anyway, so this code
properly handles all cases. Finally, the node count is incremented.

Let's see what inserting a new node at the front of the list looks like. The following diagram
illustrates the list when this function is entered:

Using Dynamic Memory Allocation Chapter 18

[417]

After the two pointers have been adjusted, the list will look as follows:

Notice that the pNode pointer is no longer needed since pList->pFirstNode also points
to the new node.

To insert a ListNode at the back of the list, we first have to see if the list is empty; if so, we
only need to set pList->pFirstNode. Otherwise, we have to traverse the list to the last
entry. This is done by first setting a temporary pointer, pCurr, to the first item in the list.
When pCurr->pNext is NULL, pCurr is pointing to the last item in the list. We only need to
set pCurr->pNext to the new node; its pNext pointer is already NULL. Finally, the node
count is incremented.

Now, let's see what inserting a new node at the back of the list looks like. The following
diagram illustrates the list when this function is entered:

Using Dynamic Memory Allocation Chapter 18

[418]

After the next final pointer is adjusted, the list will look as follows:

Once pCurr->next points to our new node, both the pCurr and pNode pointers are no
longer needed.

Like the insert functions, the next two functions define how a ListNode can be removed
from the list, as follows:

ListNode* RemoveNodeFromFront(LinkedList* pList) {
 if(IsEmpty(pList)) return NULL;
 ListNode* pCurr = pList->pFirstNode;
 pList->pFirstNode = pList->pFirstNode->pNext;
 pList->nodeCount--;
 return pCurr;
}

The following is the second function:

ListNode* RemoveNodeFromBack(LinkedList* pList) {
 if(IsEmpty(pList)) {
 return NULL;
 } else {
 ListNode* pCurr = pList->pFirstNode ;
 ListNode* pPrev = NULL;
 while(pCurr->pNext != NULL) {
 pPrev = pCurr;
 pCurr = pCurr->pNext;
 }
 pPrev->pNext = NULL;
 pList->nodeCount--;
 return pCurr;
 }
}

Using Dynamic Memory Allocation Chapter 18

[419]

To remove a ListNode structure from the front of the list, we need to check whether the
list is empty and return NULL if it is. Otherwise, we set the node to be returned by pCurr to
pList->pFirstNode and then we set the next node after pList->pFirstNode, which is
being pointed to by pList->pFirstNode->pNext, as the first node. The node count is
decremented and returns pCurr.

Let's see what deleting a node from the front of the list looks like. The following diagram
illustrates the list when this function is entered:

Notice that pCurr also points to pList->pFirstNode. After the two pointers have been
adjusted, the list will look as follows:

Notice that pCurr is the only pointer pointing to the node to be deleted and that the first
node in the list pointed to by pList->pFirstNode now points to the new first node.

Using Dynamic Memory Allocation Chapter 18

[420]

To remove a ListNode at the back of the list, we have to see if the list is empty; if so, we
return NULL. Otherwise, we have to traverse the list to the last entry. This is done by setting
a temporary pointer, pCurr, to the first item in the list. We need another temporary pointer,
pPrev, which points to the node before the node we want to remove. Both are adjusted as
the list is traversed. When pCurr->pNext is NULL, pCurr is pointing to the last item in the
list – the node we want to remove. But we also need to set pPrev->pNext to NULL to
indicate it is the last item in the list. The node count is decremented and pCurr is returned.

Now, let's see what deleting a node from the back of the list looks like. The following
diagram illustrates the list when this function is entered:

After the final next pointer is adjusted, the list will look as follows:

Once pCurr->next points to our new node, the pCurr and pNode pointers are no longer
needed.

The GetNode() function inspects a node's data without removing it from the list, as
follows:

ListNode* GetNode(LinkedList* pList , int pos) {
 ListNode* pCurr = pList->pFirstNode;
 if(pCurr == NULL) {

Using Dynamic Memory Allocation Chapter 18

[421]

 return pList->pFirstNode;
 } else if (pos == 0) {
 return pList->pFirstNode;
 } else {
 int i = 0;
 while(pCurr->pNext != NULL) {
 if(i == pos) return pCurr;
 i++;
 pCurr = pCurr->pNext;
 }
 return pCurr;
 }
}

Before traversing the list, GetNode() first checks to see whether the list is empty, and then
checks to see whether the 0th position (a magic number indicating the front of the list) is
requested. If so, the pFirstNode pointer is returned. Otherwise, the list is traversed,
adjusting pCurr in order to check for both the end of the list and whether the current node
count is the node we are looking for. This will be either a pointer to the node we are
requesting or a pointer to the last node that was returned. The list remains unchanged.

The CreateNode() function simply creates a new node structure, as follows:

ListNode* CreateNode(ListData* pData) {
 ListNode* pNewNode = (ListNode*) calloc(1 , sizeof(ListNode));
 if(pNewNode == NULL) OutOfStorage();
 pNewNode->pData = pData;
 return pNewNode;
}

The calloc() function is used to allocate memory for a ListNode and initialize all the
values in the structure to 0; a pointer to that memory is returned unless calloc() fails, in
which case OutOfStorage() is called and the program stops. Note that the linked list is
not involved; this function only creates the node and correctly initializes it with the
ListData pointer, which itself needs to have been created before we call this routine.

When items are removed from the list, they are not deleted until DeleteNode() is called,
as follows:

void DeleteNode(ListNode* pNode) {
 free(pNode->pData);
 free(pNode);
}

Using Dynamic Memory Allocation Chapter 18

[422]

Notice that in order to prevent a subtle memory leak, DeleteNode() frees both the
ListData structure (pointed to by pNode->pData) and the ListNode structure (pointed to
by pNode).

To print the list, PrintList() is called, as follows:

void PrintList(LinkedList* pList ,
 void (*printData)(ListData* pData)) {
 printf("List has %2d entries: [" , Size(pList));
 ListNode* pCurr = pList->pFirstNode;
 while(pCurr != NULL) {
 PrintNode(pCurr , printData);
 pCurr = pCurr->pNext;
 }
 printf("]\n");
}

The PrintList() function takes two parameters – the first should be familiar to you,
while the second deserves some explanation. Recall from our memory layout diagram
earlier in this chapter that a function is a named location in memory where program
execution jumps to and returns back to the location it was called from. Most of the time,
we've simply used the function name. In this case, we don't know the function name
because the ListData type could change. The print function for ListData will need to
change to reflect its actual type. Therefore, we need to pass a pointer to that function so that
we can simply call it by using a pointer to it at some later time.

Pointers to functions
When we declare a pointer to a function, we need more than just the pointer value – we
need to specify both the return type of the function and the parameter list of the function
being pointed to.

Let's break this apparent syntactical gobbledygook down into understandable parts. It
consists of three parts:

The return type of the function; in this case, void.
The name of the pointer to the function; in this case, (*printData). This
indicates that printData is the name pointer to a function; the function itself
may have a completely different name. Given item 1, we know that the function
returns void.
The function we'll implement via this pointer to it has a parameter list; in this
case, (ListData* pData).

Using Dynamic Memory Allocation Chapter 18

[423]

Given these three parts, compare the function pointer declaration to the function's
prototype; in this case, PrintInt():

void (*printData)(ListData* pData); // function pointer
void PrintInt(ListData* pData); // function prototype
void PrintInt(ListData* pData) { // function definition
 ...
}

Notice how, except for the declaration of a function pointer, the other elements of a
function call are present – the return type and the function parameter list. A function
pointer cannot point to just any function. It must be declared with the same return type and
parameter list as the function it will be used to call.

In the function body of PrintList(), we do not call the function using the function
pointer named printData; instead, we pass that pointer value to the function that will call
it, that is, PrintNode().

To print the list, we print some information about the list and then iterate through it,
updating the temporary pointer, pCurr, all while visiting each node in the list. At each
iteration, PrintNode() is called with the current node pointer and the pointer to the
function to print the data.

To print an individual node's data, PrintNode() is called, as follows:

void PrintNode(ListNode* pNode ,
 void(*printData)(ListData* pData)) {
 printData(pNode->pData);
}

The parameter list for PrintNode() consists of a pointer to a node and the same function
pointer specification (you may still call this syntactical gobbledygook). But notice that here,
in the function body, the printData pointer is used as if it were a function name (it's just a
pointer) with the appropriate parameter list. We'll see the definition of PrintInt(), the
function this will call, very shortly.

Now would be a good time to enter all of the function prototypes, the functions themselves,
a dummy main() function, and the following #include files in linkedlisttester.c
before going any further:

#include <stdio.h> // for printf() and fprintf()
#include <stdlib.h> // for calloc() and free()
#include <stdbool.h> // for bool, true, false

Using Dynamic Memory Allocation Chapter 18

[424]

Compile the program. You should receive no errors. This will serve as a simple checkpoint.
Address any compiler errors. Most likely, they will be typos or omissions of simple things.
Do not proceed until you get a clean compile.

More complex operations on a linked list
Our list provides a useful but minimal set of operations. It contains both stack and queue
operations so that we can use it for either a stack or a queue, as needed. There are other list
operations you might want to try to implement yourself. Some of these might include the
following function prototypes:

ListNode* InsertNodeAt(LinkedList* pList , ListNode* pNode);
ListNode* RemoveNodeAt(LinkedList* pList , ListNode* pNode);
void SortList (LinkedList* pList , eSortOrder order);
void ConcatenateList(LinkedList* pList1 , LinkedList* pList2);

We will not implement these functions right now. We will, however, implement some of
these when we revisit our carddeck.c program.

A program to test our linked list structure
OK, so we implemented a linked list in C. Or so we think. We wrote a lot of code that we
compiled for errors as we wrote it. However, we can't know for certain until we test it. We
need to test it thoroughly and get all the results we expect. The testing and verification part
of programming is just as important – sometimes even more important – than just writing
code that compiles. Writing and verifying the code you write distinguishes a novice
programmer from an expert.

Before we can continue, we need two functions specific to our ListData type. The first is
as follows:

void PrintInt(int* i) {
 printf("%2d ", *i);
}

The second is as follows:

ListData* CreateData(ListData d) {
 ListData* pD = (ListData*)calloc(1 , sizeof(ListData));
 if(pD == NULL) OutOfStorage();
 *pD = d;
 return pD;
}

Using Dynamic Memory Allocation Chapter 18

[425]

The PrintInt() function simply prints the integer value passed to it by calling printf().
If we were to use a different ListData type, we would need to provide an appropriate
PrintData() routine for it. We'll see how this function is called in main() with the
PrintList() function calls.

The CreateData() function calls calloc() to allocate memory for a ListData structure
and initializes all the values in the structure to 0; a pointer to that memory is returned
unless calloc() fails, in which case OutOfStorage() is called and the program stops.
This function will be used in our test functions to exercise our linked list.

We can now start with the main() function and work backward. The test code in main() is
as follows:

int main(void) {
 LinkedList* pLL = CreateLinkedList();

 printf("\nUsing input{ 1 2 3 4 } ");
 PrintList(pLL , PrintInt);
 int data1[] = { 1 , 2 , 3 , 4 };
 for(int i = 0 ; i < 4 ; i++) {
 TestPrintOperation(pLL , eInsert , data1[i] , eFront);
 }
 TestPrintOperation(pLL , eLook , 0 , eFront);
 TestPrintOperation(pLL , eDelete , 0 , eBack);

 printf("\nUsing input{ 31 32 33 } ");
 PrintList(pLL , PrintInt);
 int data2[] = { 31 , 32 , 33 };
 for(int i = 0 ; i < 3 ; i++) {
 TestPrintOperation(pLL , eInsert , data2[i] , eBack);
 }
 TestPrintOperation(pLL , eLook , 0 , eBack);
 int count = pLL->nodeCount;
 for(int i = 0 ; i < count ; i++) {
 TestPrintOperation(pLL , eDelete, 0 , eFront);
 }
}

In main(), we are exercising all of the features of our linked list. This test consists of the
following operations:

Create a new linked list.1.
Print it out, showing that it is empty.2.
Insert four nodes, each into the front of it. Each time a node is inserted, the action3.
is described and the current list is printed.

Using Dynamic Memory Allocation Chapter 18

[426]

Look at the first node.4.
Delete a node from the back. Each time a node is inserted, the action is described5.
and the current list is printed.
Insert three nodes, each into the back of it.6.
Look at the last node.7.
Delete each node from the front of the list until it is empty. Each time a node is8.
deleted, the action is described and the current list is printed.

At each operation, we print some information about what happened and the current state
of the list. Most of the test work occurs in the TestPrintOperation(), as follows:

void TestPrintOperation(LinkedList* pLL , eAction action ,
 ListData data , eWhere where) {
switch(action) {
 case eLook:
 data = TestExamineNode(pLL , where);
 printf("Get %s node, see [%2d]. " ,
 where==eFront ? "front" : " back" , data);
 break;
 case eInsert:
 printf("Insert [%2d] to %s. " , data ,
 where==eFront ? "front" : " back");
 TestCreateNodeAndInsert(pLL , data , where);
 break;
 case eDelete:
 data = TestRemoveNodeAndFree(pLL , where);
 printf("Remove [%2d] from %s. " , data ,
 where==eFront ? "front" : " back");
 break;
 default:
 printf("::ERROR:: unknown action\n");
 break;
 }
 PrintList(pLL , TestPrintInt);
}

For testing purposes, some enums are defined, that is, eAction { eLook , eInsert,
eDelete } and eWhere {eFront , eBack }, to enable a central test routine,
TestPrintOperation(), to be called. For each possible eAction, we use a switch to print
information about the action, as well as call one of TestExamineNode(),
TestCreateNodeAndInsert(), or TestRemoveNodeAndFree().

Using Dynamic Memory Allocation Chapter 18

[427]

Before returning, the current list is printed for inspection. Three action functions are
implemented. The first is as follows:

void TestCreateNodeAndInsert(LinkedList* pLL , ListData data ,
 eWhere where) {
 ListData* pData = CreateData(data);
 ListNode* pNode = CreateNode(pData);
 switch(where) {
 case eFront: InsertNodeToFront(pLL , pNode); break;
 case eBack: InsertNodeToBack(pLL , pNode); break;
 }
}

The second is as follows:

ListData TestExamineNode(LinkedList* pLL , eWhere where) {
 ListNode * pNode;
 switch(where) {
 case eFront: pNode = GetNode(pLL , 0); break;
 case eBack: pNode = GetNode(pLL , pLL->nodeCount); break;
 }
 ListData data = *(pNode->pData);
 return data;
}

The third is as follows:

ListData TestRemoveNodeAndFree(LinkedList* pLL , eWhere where) {
 ListNode * pNode;
 switch(where) {
 case eFront: pNode = RemoveNodeFromFront(pLL); break;
 case eBack: pNode = RemoveNodeFromBack(pLL); break;
 }
 ListData data = *(pNode->pData);
 DeleteNode(pNode);
 return data;
}

Enter each of these test routines after all of the linked list code but before main(). Then,
enter the main() routine. Save the file and then compile and run this program. Because
there is quite a bit of code, you may have to edit and compile your version several times
until you get a clean compile.

Using Dynamic Memory Allocation Chapter 18

[428]

When you run the program, you should see the following output:

Notice how each line of the program corresponds to the test outline given previously.
Carefully compare the action taken to the impact resulting in the state of the list. When this
validation passes, we can feel confident in using this code in other, more useful scenarios.
We will employ this list structure and its routines when we return to
our carddeck.c program in Chapter 24, Working with Multi-File Programs.

You may have noticed that writing test code is nearly as much work as writing the code
itself. This is very often the case. Writing concise, complete, and correct test code is hard.
From my years of experience, I would argue that writing such test code is as worthwhile as
writing the code, for several reasons:

When your tests fail, you invariably learn something.
You gain a very high level of confidence that the body of code works as intended.
You can make changes to the code and verify that the code still works as
expected.
There tends to be much less reworking and debugging with tested code.

Often, as a professional programmer, you may be pushed and cajoled to omit testing. Don't
do it, largely for the reasons given here, and to preserve your own sanity.

Using Dynamic Memory Allocation Chapter 18

[429]

Other dynamic data structures
In this chapter, we have created a program that implements a singly-linked list where we
can add and remove list elements, or list nodes, from the front or back of the list. This is a
fairly general, minimal list implementation that leaves out a few other possibly useful
operations, such as listConcatenate() to join two lists, listSplit() to break a list into
two given criteria, listSort() to order the elements of the list in various ways, and
listReverse() to reverse the elements of a list. We may also want to enhance our insert
and remove operations so that we can add and remove nodes from anywhere in the list.
Because of space limitations, we will not do so here.

The following is a brief, annotated list of other useful, possibly mind-bending, data
structures:

Doubly-Linked List: A linked list that contains not only a single pointer to the
next list node, but also another pointer that points to the preceding list node. The
list may be traversed easily from front to back, as well as from back to front.
Stack: A linked list where each list node is added only to the front of the list
(pushed onto the stack). Subsequently, each list node is only removed from the
front of the list (popped off the stack). This is also known as a Last In First Out
(LIFO) list.
Queue: A linked list where each list node is added only to the back of this list
(enqueued). Subsequently, each list node is only removed from the front of the
list (dequeued). This is also known as a First In First Out (FIFO) list.
Deque: A generalized list that combines the properties of both a stack and a
queue. Elements can be added or removed from anywhere in the list. Our
implementation of a linked list is very close to that of a deque.
Priority queue: A list where each list node also has a given priority. List nodes
are added to the list in order of priority and removed from the list according to a
priority scheduling scheme.
Set: A collection of unique elements, in no particular order. Sometimes, they are
implemented using other dynamic data structures such as trees or hash tables.
Map: A collection of (key, value) pairs where the key is unique and is used to
look up a value associated with that key. This can also be called an associative
array, symbol table, or dictionary.

Using Dynamic Memory Allocation Chapter 18

[430]

Tree: A tree simulates a hierarchical tree structure, with a single root node from
which child nodes form branches. Like branches in a real tree, child nodes can
only contain subchildren and cannot be linked to other branches.
Graph: A collection of nodes connected via links. A graph is more of a general
form of a tree in that it may have cycles (where a node from one branch may link
to the root or a node in another branch).

Studying these data structures and implementing them yourself is beyond the scope of this
book. However, such a study would be extremely worthwhile and should be one of the
next steps in your journey to becoming an expert C programmer.

Summary
In this chapter, we learned how to allocate, release, and manipulate dynamic memory. We
learned about some special considerations to take into account when employing dynamic
memory, such as memory management and avoidance of memory leaks. To put our
knowledge into practice, we implemented a singly-linked list, which can add and remove
list nodes to either the front or back of the list. We learned from this that data structures, as
well as performing operations on those data structures, can allow us to create very
powerful tools. Consequently, our implementation can be reused for any kind of data
wherever needed. In doing so, we have gotten an introduction to the power and flexibility
of dynamic data structures.

We also employed another flexible mechanism – pointers to functions – and saw how to
pass that pointer to another function, as well as call a function using that pointer. Lastly, we
got a brief overview of other important dynamic data structures, such as deques, maps, and
trees.

In the next chapter, we will have a chance to catch our breath as we take a deep dive into
formatted output and the full range of formatting values that printf() provides.

4
Section 4: Input and Output

So far, all the input in this book has been provided by the program and all the output has
been sent in its simplest form to the screen. In this section, we'll expand on the various
inputs and outputs, as well as more sophisticated formatting.

This section comprises the following chapters:

Chapter 19, Exploring Formatted Output
Chapter 20, Getting Input From the Command Line
Chapter 21, Exploring Formatted Input
Chapter 22, Working with Files
Chapter 23, Using File Input and File Output

19
Exploring Formatted Output

In previous chapters, all the input was provided within each program and all the output
was sent in rather simple forms to the console (screen). In this chapter, we will expand on
more sophisticated output formatting. However, what if we need a precise layout of
numbers and text? We saw in Chapter 15, Working with Strings, how to precisely generate a
table of ASCII characters. With full knowledge of the possibilities of output formatting,
very precise tables of numbers can be created. Furthermore, other kinds of precisely
formatted documents can be generated, such as invoices, product price lists, and many
others.

The C printf() function provides a rich set of formatting options, far beyond what we
have used up to this point. We can format numbers—both integers and decimal
numbers—characters, and strings in many ways. In this chapter, we will explore, primarily
through examples, the various ways in which printf() can format values.

The following topics will be covered in this chapter:

Understanding the general form of the printf() format specifier
Using unsigned integers in different bases
Considering negative numbers as unsigned integers
Exploring powers of 2 and 9 in different bases
Printing pointer values
Using the signed integer field width, precision, alignment, and zero-filling
Formatting long-long integers
Using the floating-point field width, precision, alignment, and zero-filling
Printing doubles in hexadecimal format
Printing optimal field width formatting for doubles
Using the string field width, precision, alignment, and zero-filling
Exploring sub-string output
Using single character formatting

Exploring Formatted Output Chapter 19

[433]

Technical requirements
Continue to use the tools you chose in the Technical requirements section of Chapter 1,
Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Revisiting printf()
In previous chapters, whenever we printed the output of values to the console, we used
relatively simple printf() formatting. However, printf() provides a very rich set of
format specifiers for unsigned integers, pointers, signed integers, floats, doubles, characters,
and strings. The examples given in this chapter will not provide an exhaustive example of
every possible format specifier, nor of every possible combination of format specifiers. The
programs provided are intended to serve as a starting point for your own continued
experimentation.

Understanding the general format specifier form
So far, we have seen, for the most part, the simplest format specifier, %<x>, or occasionally
even %<n><x>, where <x> is an output conversion type and <n> is the field width into
which the value is printed. Depending on the value, the formatted output may have added
padding or be truncated to fit or even overflow beyond the requested field width. We can
expand these simple concepts to the more general form of a format specifier.

The general form of a format specifier begins with the percentage character (%) and has the
following elements, in order:

Zero or more flag characters:
Left-aligned: This is the - character. If missing, the value will be
right-aligned.
The + sign to show a positive or negative value, or a space to only
show a - sign.
Zero-padding: 0.
A variant of formatting: This is the # character; the variant
depends on the conversion type.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Exploring Formatted Output Chapter 19

[434]

An optional minimum field width denoted by a decimal integer constant
An optional precision specification denoted by a period (.) and optionally
followed by a decimal integer constant
An optional size modifier expressed as one of the following letters:

Long or long-long: l, ll, or L.
Short or byte: h or hh.
Specific type: j, z, or t.
We will primarily explore the ll size modifier.

The conversion operation, which is a single character that may be one of the
following:

Unsigned integer: d, i, o, u, x, or X
Pointers: n or p
Signed integer: d or i
Floating-point: a, A, e, E, f, F, g, or G
A character (c) or string (s)
The % character itself

If the compiler does not understand a format specifier, the specifier is invalid, or it is
inappropriate for the given conversion type, a compiler error will be generated. Not all of
the flag characters are appropriate for all of the conversion operations. The conversion
operation terminates the format specifier.

Consider the %-#012.4hd format specifier. It is broken up into parts in the following
diagram:

This format specifier will convert a signed integer into a short integer, left-aligning
and zero-filling the field of 12 characters using a precision of 4 decimal numbers. In reality,
the # flag is inappropriate for the d type conversion. This specifier may be somewhat
confusing to you now. However, the example programs we will look at will illustrate the
most common and useful combinations of format specifiers.

Exploring Formatted Output Chapter 19

[435]

In all of our example programs, space had to be removed to fit them onto the page.
Therefore, if you type in these programs exactly as they are shown, you will not get the
same aligned output shown for each program. To do that, I had to repeatedly fiddle with
the spacing to make everything align to my rather persnickety satisfaction. Spaces are
preserved in the sample programs in the repository.

Also, note that some printf(" ... ") strings are longer than the space allotted on this
page. When you see this, be aware that the beginning " character and the end " character
are on the same line so that your program compiles and runs.

Our first program will deal with unsigned integers.

Using format specifiers for unsigned
integers
Unsigned integers include positive integers in several base numbering systems, as well as
pointer values. The first example program is unsignedInt.c, and it begins as follows:

#include <stdio.h>
int main(void) {
 int smallInt = 12;
 int largeInt = (1024*1024*3)+(1024*2)+512+128+64+32+16+8+4+2+1;
 int negativeInt = -smallInt;
 unsigned anUnsigned = 130;

 // the other code snippets go here.
}

This code defines smallInt, largeInt, negativeInt, and unsigned int values. These
will be used in each snippet that follows. After you type in the program and get it to run,
you may want to experiment with different values for each of these variables.

Exploring Formatted Output Chapter 19

[436]

Using unsigned integers in different bases
In the first code snippet, values in various base numbering systems are printed—these are
the octal (base-8), decimal (base-10), and hexadecimal (base-16) formats. Each of these
values is printed in a minimum field width of 12 characters. The numbers are not truncated.
If the converted number is longer than the minimum field, it simply spills over the
minimum field width:

 printf(" Unsigned Printf \n");
 printf(" Base Base-8 Base-10 Base-16 BASE-16\n");
 printf(" Name octal unsigned hexadeximal HEXIDECIMAL\n");
 printf(" Specifier %%12o %%12u %%12x %%12X \n");
 printf(" [%12o] [%12u] [%12x] [%12X]\n" ,
 smallInt , smallInt , smallInt , smallInt);
 printf(" [%12o] [%12u] [%12x] [%12X]\n\n" ,
 largeInt , largeInt , largeInt , largeInt);
 printf(" [%12o] [%12u] [%12x] [%12X]\n\n" ,
 anUnsigned , anUnsigned , anUnsigned , anUnsigned);

For each of these values, a field of 12 is enough such that nothing spills over. You may want
to experiment with a smaller minimum field width. Notice how the X conversion type uses
uppercase hexadecimal digits.

The following snippet is identical to the previous one except that the # flag is used for the
octal and hexadecimal values:

 printf(" Specifier %%#o %%#u %%#x %%#X\n");
 printf(" [%#12o] [%12u] [%#12x] [%#12X]\n" ,
 smallInt , smallInt , smallInt , smallInt);
 printf(" [%#12o] [%12u] [%#12x] [%#12X]\n" ,
 largeInt , largeInt , largeInt , largeInt);
 printf(" [%#12o] [%12u] [%#12x] [%#12X]\n\n" ,
 anUnsigned , anUnsigned , anUnsigned , anUnsigned);

First, notice how the octal numbers are preceded by 0 and the hexadecimal numbers are
preceded by either 0x or 0X. Also, notice that # is not used for the u type conversion since it
is a decimal value. Try putting it in and see whether the program compiles; you should get
a compiler error.

Exploring Formatted Output Chapter 19

[437]

Considering negative numbers as unsigned
integers
We are using the unsigned type conversions. This does not mean that we can't convert a
negative number. You may be surprised by the output of the following code:

 printf(" Negative Numbers as Unsigned:\n");
 printf(" -0 [%12o] [%12u] [%12x] [%12X]\n" ,
 -0 , -0 , -0 , -0);
 printf(" -1 [%12o] [%12u] [%12x] [%12X]\n" ,
 -1 , -1 , -1 , -1);
 printf(" -2 [%12o] [%12u] [%12x] [%12X]\n" ,
 -2 , -2 , -2 , -2);
 printf(" -12 [%12o] [%12u] [%12x] [%12X]\n\n" ,
 negativeInt , negativeInt , negativeInt , negativeInt);

Negative numbers are treated specially by every computer system; they are converted
internally using an algorithm called two's complement. Two's complement is a method to
avoid the problem of having +0 and -0, which is why the second statement in this code
snippet uses -0 as a value to test how it is treated. Unsigned types, by definition, do not
have a sign bit; so, we see their internal representation. The takeaway from this is that
printf() takes a bit pattern found in the given value and formats it to the specified type
conversion. It is our responsibility to ensure these conversions make sense and are
meaningful.

You may want to change this code to a loop that counts down from 0 to, for example, -16.
If you do that, can you see the pattern?

Exploring powers of 2 and 9 in different bases
In the next code snippet, we will examine the formatting for a series of numbers that are
powers of 2 in each of the base systems. For comparison, we will repeat the loop, but this
time print out powers of 9, as follows:

 printf("Powers of 2: 2^0, 2^2, 2^4, 2^6, 2^8 , 2^10\n");
 int k = 1;
 for(int i = 0 ; i < 6 ; i++ , k<<=2) {
 printf(" [%#12o] [%12u] [%#12x] [%#12X]\n" ,
 k , k , k , k);
 }
 printf("\nPowers of 9: 9^1, 9^2, 9^3, 9^4\n");
 printf(" Specifier %%12o %%12u %%12x %%12X \n");
 k = 9;

Exploring Formatted Output Chapter 19

[438]

 for(int i = 0 ; i < 5 ; i++ , k*=9) {
 printf(" [%#12o] [%12u] [%#12x] [%#12X]\n" ,
 k , k , k , k);
 }

Even though we have not explored different base numbering systems, this code is intended
to provide a starting point for your own understanding of octal and hexadecimal counting.
Of the two numbering systems, pay more attention to hexadecimal as this is much more
common today than octal. To do this, you may want to change the first loop to go from 0 to,
for example, 32, and then study the pattern of base numbers for each base. Base 9 or
powers of 9 have no significance to computer programming and can be considered an idle
curiosity.

Printing pointer values
The last bit of code prints out the value of a pointer using two different methods, as
follows:

 printf("\nPointer Output\n");
 printf(" %%p [%p] pointer\n" , &smallInt);
 printf(" %%#lx [%#lx] using hex\n\n" , (unsigned long)&smallInt);

The first method uses the p type conversion. Notice that no casting is required. The second
method uses the #lx specifier; this must be specified as a long hex value to get the full 64-
bit pointer value and not a 32-bit one. Notice the address of smallInt must be cast to an
unsigned long variable or a compilation error will result. In this instance, we are coercing
the &smallInt pointer type to match the integer type specified by %#lx. Both printed
values of &smallInt should match. The p type conversion is certainly simpler and safer.

Exploring Formatted Output Chapter 19

[439]

Enter these code snippets into unsignedInt.c. Compile and run the program. You should
see something similar to the following output:

Once you have done that, you may want to try some of the experiments mentioned earlier
before moving on. You may also want to, if you are persnickety like me, mess around with
the spacing between the numbers to match my output. Or, you can simply download the
program from the repository after you have successfully run your own program.

In the next section, we will expand the use of a minimum field, precision, and alignment for
signed integers. These modifiers also apply to unsigned integers; they just weren't applied
here. You may want to also experiment with these modifiers in unsignedInt.c, as well as
in the next program.

Exploring Formatted Output Chapter 19

[440]

Using format specifiers for signed integers
Signed integers include integers that can have negative as well as positive values. The next
example program is signedInt.c, and it begins as follows:

#include <stdio.h>
int main(void) {
 int smallInt = 12;
 int largeInt = 0x7fffffff; // int32 max
 int negativeInt = -smallInt;
 unsigned anUnsigned = 130;
 long long int reallyLargeInt = 0x7fffffffffffffff; // int64 max

 // the other code snippets go here.
}

The values of smallInt, largeInt, negativeInt, anUnsigned, and reallyLargeInt
will be printed using various field, precision, and alignment modifiers. Notice that
largeInt is given a hexadecimal value that is the largest positive value a 32-bit integer can
hold. Likewise, reallyLargeInit is given a hexadecimal value that is the largest positive
value a 64-bit integer can hold. What value is printed if the first 7 number in each value is
changed to f?

Using the signed integer field width, precision,
alignment, and zero-filling
Each of these values will be printed using a minimum field of 10 characters, sometimes left-
aligned and with different values of precision, as follows:

 printf(" Signed Printf \n");
 printf(" Name right left zero right left\n");
 printf(" aligned aligned filled minimum minimum whatever\n");
 printf(" Specifier %%10d %%-10d %%-.10d %%10.3d %%-10.3d %%d\n");
 printf(" [%10d] [%-10d] [%-.10d] [%10.3d] [%-10.3d] [%d]\n" ,
 smallInt, smallInt, smallInt, smallInt, smallInt, smallInt);
 printf(" [%10d] [%-10d] [%-.10d] [%10.3d] [%-10.3d] [%d]\n" ,
 largeInt, largeInt, largeInt, largeInt, largeInt, largeInt);
 printf(" [%10d] [%-10d] [%-.10d] [%10.3d] [%-10.3d] [%d]\n" ,
 anUnsigned , anUnsigned , anUnsigned ,
 anUnsigned , anUnsigned , anUnsigned);
 printf(" [%10d] [%-10d] [%-.10d] [%10.3d] [%-10.3d] [%d]\n\n" ,
 negativeInt , negativeInt , negativeInt ,
 negativeInt , negativeInt , negativeInt);

Exploring Formatted Output Chapter 19

[441]

The only difference between each printf() call is the variables given to them to convert
and print. The column headers have been constructed so that they accurately reflect the
format specifier given. Rather than try to explain each statement, we will see how they
appear in the output to get an immediate grasp of how the specifiers work. All of these
values are converted by their type conversion specifier into 32-bit integers, but what if we
want to print a 64-bit integer?

Formatting long-long integers
If we want to print a 64-bit value, we need to use the ll length modifier, as follows:

 printf(" Specifier %%20lld %%-20lld %%-.20lld\n");
 printf(" [%20lld] [%-20lld] [%-.20lld]\n" ,
 reallyLargeInt , reallyLargeInt , reallyLargeInt);
 printf(" %%20.3lld %%-20.3lld %%lld\n");
 printf(" [%20.3lld] [%-20.3lld] [%lld]\n\n" ,
 reallyLargeInt , reallyLargeInt , reallyLargeInt);

These printf statements are the same format specifiers as before, except they are in a
minimum field of 20 characters and they use the lld type conversion to print a 64-bit value.
Also, as before, we will see how these appear in the output and then compare them to the
formatted 32-bit values.

Powers of 2 and 9 with different modifiers
In the final code snippet, powers of 2 and 9 are printed, as follows:

 printf("Powers of 2: 2^0, 2^2, 2^4, 2^6, 2^8 , 2^10\n");
 int k = 1;
 for(int i = 0 ; i < 6 ; i++ , k<<=2) {
 printf(" [%6d] [%-6d] [%-.6d] [%6.3d] [%-6.3d] [%d]\n" ,
 k , k , k , k , k , k);
 }
 printf("\nPowers of 9: 9^1, 9^2, 9^3, 9^4\n");
 k = 9;
 for(int i = 0 ; i < 5 ; i++ , k*=9) {
 printf(" [%6d] [%-6d] [%-.6d] [%6.3d] [%-6.3d] [%d]\n" ,
 k , k , k , k , k , k);
 }

In these printed values, we will pay particular attention to the formatted output—how they
are aligned, whether they are zero-filled, and how the precision specifier changes them, if at
all.

Exploring Formatted Output Chapter 19

[442]

Enter these code snippets into signedInt.c. Compile and run the program. You should
see something similar to the following output:

Pay particular attention to the differences in formatting in each column. Your values will
not line up, as in the preceding output. Notice the number alignment when - is used.
Notice how zeros are used as fillers when a .10 or .3 precision is specified. Notice the field
size when nothing is specified (see the last column).

As before, you now have a starting point to experiment with different values for the
variables and each of the format specifiers. You may want to do that before moving on to
formatting floating-point numbers. With floating-point numbers, we will also use the +
flag; this flag applies to signed integers, so you might want to return to signedInt.c and
experiment with that flag.

Exploring Formatted Output Chapter 19

[443]

Using format specifiers for floats and
doubles
Floating-point numbers are floats, doubles, and long doubles that can be expressed in a
number of ways mathematically. They can be expressed naturally where there is a whole
number part and a fractional part. They can be expressed in scientific notation where there
is a coefficient raised to a power of 10, and it takes the 1.234567 x 10^123 form. The
decimal point floats such that the coefficient has a whole number part that is between 1 and
10 and the exponent is adjusted accordingly. C provides both of these formats.

The next example program is double.c, and it begins as follows:

#include <stdio.h>
int main(void) {
 double aDouble = 987654321.987654321;

 // the other code snippets go here.
}

In this program, only one value is defined. Whenever the value to be converted into float,
it is automatically converted to a double value and then formatted. Therefore, there are no
float value-specific type conversions. We will explore the various ways that
the double values can be formatted.

Using the floating-point field width, precision,
alignment, and zero-filling
First, we print aDouble in various ways in its natural form using the f conversion type, as
follows:

 printf("Use of the %%f, %%e, and %%E format specifiers:\n");
 printf(" Specifier Formatted Value\n");
 printf(" %%f [%f] whatever\n",aDouble);
 printf(" %%.3f [%.3f] 3 decimal places\n",aDouble);
 printf(" %%.9f [%.8f] 8 decimal places\n",aDouble);
 printf(" %%.0f [%.0f] no decimal places\n",aDouble);
 printf(" %%#.0f [%#.0f] no decimal places, but decimal point\n",
 aDouble);
 printf(" %%15.3f [%15.3f] 3 decimals, 15 wide, left aligned]\n",
 aDouble);
 printf(" %%-15.3f[%-15.3f] 3 decimals, 15 wide, right aligned\n",
 aDouble);

Exploring Formatted Output Chapter 19

[444]

With no precision specified, the double value is formatted to six decimal places (the
default). The next three statements print aDouble to various precisions; these change how
many digits of the fraction are printed. When .0 is used, no fractional part is printed, not
even the decimal point. When # is used with .0, no decimal digits are printed but the
decimal point is. The last two statements use the alignment of aDouble in a minimum field
of 15 characters.

The next set of statements use the e and E type conversions to print aDouble using
scientific notation, as follows:

 printf(" %%e [%e] using exponential notation\n",aDouble);
 printf(" %%E [%E] using EXPONENTIAL notation\n",aDouble);
 printf(" %%.3e[%.3e] exponent with 3 decimal places\n",aDouble);
 printf(" %%15.3e [%15.3e] exponent with 3 decimals,15 wide\n",
 aDouble);
 printf(" %%015.3e[%015.3e]exponent with 3 decimals,15 wide,0-fill\n",
 aDouble);
 printf(" %% 15.3e [% 15.3e] exponent with 3 decimals, 15 wide,
 leave space for sign\n" , aDouble);
 printf(" %%+15.3e [%+15.3e] exponent with 3 decimals, 15 wide,
 show sign\n" , aDouble);
 printf(" %%+015.3e [%+015.3e] exponent with 3 decimals, 15 wide,
 show sign, 0-fill\n" , aDouble);
printf(" %%.0e[%.0e]exponent with no decimals\n" ,aDouble);
printf(" %%15.0e [%15.0e] exponent 15 wide, no decimals\n\n",
 aDouble);

Each of these statements provides an example of using alignment, minimum field width,
precision, zero-filling, and a sign indicator. When the + flag is used, either + or - will
always be printed. However, instead of +, a space is used, only the - sign will be printed,
and a space will be used for positive values. The explanation of each will be obvious from
the output.

Printing doubles in hexadecimal format
The a and A type specifiers print floating-point numbers such that the coefficient is in
hexadecimal format and the exponent is a power of 2, as follows:

printf(" %%a [%a] hexadecimal version of double, exponent=2^p\n",
 aDouble);
printf(" %%A [%A] HEXADECIMAL version of double, exponent=2^P\n\n",
 aDouble);

Exploring Formatted Output Chapter 19

[445]

These type conversions are a recent addition to C and were added for the internal
validation of floating-point values. If you ever find yourself in need of these types of
conversion, please email me; I would love to know the circumstance for their use.

Printing optimal field widths for doubles
The g and G type specifiers behave either like the f type conversion or the e and E type
conversions, depending on the value to be converted, as follows:

printf("Use of the %%g, and %%G format specifiers:\n");
printf(" Specifier %%18.12 g%%18.3g");
printf(" %%18.3G %%18g\n");
double k = aDouble * 1e-15;
for(int i = 0 ; i < 10 ; i++, k *= 1000)
 printf(" [%18.12g] [%18.3g] [%18.3G] [%18g]\n" ,
 k , k , k , k);

The value of k is assigned aDouble multiplied by a very small number, giving a very small
number. By using a loop and multiplying k by 1,000, various g or G type conversions are
used in each iteration as the value increases. We will see that the g or G type conversions
attempt to format the value in the shortest format possible for the given value. This will be
clear in the program's output.

Enter these code snippets into double.c. Compile and run the program. You should see
something similar to the following output:

Exploring Formatted Output Chapter 19

[446]

For each of the formatted values, pay attention to the number of decimal places printed and
whether numerical rounding is taking place. Note the various scientific notation formats.
See how the last two formats of .0e truncate the value to all but the most significant digit. I
would like to say something meaningful about the output of the a and A type conversions,
but I cannot seem to find the words. Finally, notice how the g type specifier changes from
scientific notation to natural and back to scientific notation as the magnitude of k increases
by 1000. Also, notice that the format that is used not only depends on the value but also the
precision specifier. You can see this in the different printed output in each column.

As a final note on floating-point formatting, the internal value of the printed value has not
changed. The value of aDouble throughout the program is still 987654321.987654321. It
hasn't changed internally one bit (literally); only its external appearance as a printed value
has been changed by the format specifiers. Again, printf() is taking a given bit pattern
and formatting it in a specified manner.

Exploring Formatted Output Chapter 19

[447]

As before, you now have a starting point to begin your own experimentation with various
combinations of format specifiers and values for floating-point numbers.

Whew! That is a rather dizzying array of formats from just a small set of flags, the field
width, and precision specifiers. Let's finish with some simple character and string
formatting.

Using format specifiers for strings and
characters
Our last program is character_string.c, and it begins as follows:

#include <stdio.h>
int main(void) {
 char aChar = 'C' ;
 char* pStr = "Learn to program with C" ;
 // the other code snippets go here.
}

A character value, aChar, is defined with the C value and a pStr string is defined to point
to the start of the "Learn to program with C" string.

Using the string field width, precision, alignment,
and zero-filling
When printing a string with the s conversion type, the alignment, minimum field width,
and precision modifiers still apply, as follows:

 printf("String output\n");
 printf("Specifier Formatted Value\n");
 printf("%%s [%s] everything\n" , pStr);
 printf("%%30s [%30s] everything right-aligned, field=30\n",pStr);
 printf("%%.10s [%.10s] truncated to first 10 characters\n",pStr);
 printf("%%30.10s [%30.10s] first 10 chars right-aligned, fld=30\n",
 pStr);
 printf("%%-30.10s [%-30.10s] first 10 chars left-aligned,
 field=30\n\n" , pStr);
 printf("%%*.*s [%*.*s] use width & precision in argument list\n\n" ,
 30 , 10 , pStr);

Exploring Formatted Output Chapter 19

[448]

The string to be printed must be a valid (null-terminated) string. We have seen each of
these modifiers before. Unlike integers, however, truncation may occur, depending on the
length of the string and the specified precision. We will see how they appear in the output.

The most interesting format specifier can be found in the last statement, where %*.*s
indicates that the minimum field width value will be read from the first argument, which in
this case is 30, and the precision value will be read from the second argument, in this
case, 10. In this way, the modifiers are not fixed in code but can be supplied as variables at
runtime. This notation applies to integers and floating-point numbers; we just saved it for
last. For completeness,%*s and %.*s are both valid and both expect the first argument to be
either a value for the minimum field width or the precision, respectively.

Exploring the sub-string output
Because the s type conversion is a pointer to a string, we can do a few other pointer
arithmetic tricks, as follows:

 printf("Sub-string output\n");
 printf("%%.7s [%.7s] 3rd word (using array offset)\n",&pStr[9]);
 printf("%%.12s [%.12s] 3rd and 4th words (using pointer
 arithmetic)\n\n" , pStr + 9);

The first string output uses both precision and a pointer offset to print program. The
second string output again uses precision but also uses pointer arithmetic to print program
with.

Using single character formatting
Finally, we can format a single character with the c type conversion, as follows:

 printf("Character output\n");
 printf("%%c [%c] character\n",aChar);
 printf("%%10c [%10c] character right-aligned, field=10\n",aChar);
 printf("%%-10c [%-10c] character left-aligned, field=10\n\n",aChar);

First, a single character is printed. Then, it is right-aligned in a field of 10. Finally, it is left-
aligned in a field of 10.

Exploring Formatted Output Chapter 19

[449]

Enter these code snippets into character_string.c. Compile and run the program. You
should see something similar to the following output:

Notice how the alignment, minimum field width, and precision modifiers behave for
strings and characters as they do for integers and doubles.

This completes our exploration of formatted output. With these programs, you can
continue with your own exploration.

Summary
In this chapter, we fairly exhaustively explored output formatting for integers—both signed
and unsigned—floating-point numbers, characters, and strings. Example programs that
demonstrate the most common and useful combinations of print modifiers were also
presented. However, not all the possible combinations nor modifiers were demonstrated.
These programs can and should be used as starting points for further experimentation for
your specific output formatting needs. These programs are also valuable to verify how a
particular C runtime performs because there are always minor differences from one
implementation of C to the next. This is one place where differences appear most often.

Exploring Formatted Output Chapter 19

[450]

In the next two chapters, we will explore getting simple input from the command line and
then getting formatted and unformatted input from the console. We will then expand those
topics in subsequent chapters even further for files, including reading various inputs from
files and writing various outputs to files. Various inputs and outputs include formatted,
unformatted, and even raw data.

Nearly all of the concepts that we learned in this chapter will be useful for Chapter 21,
 Exploring Formatted Input, where values are read from the console and converted into the
desired type. In the next chapter, we will begin the exploration of simple input, which will
direct program flow until the input (user) signals the program to quit.

20
Getting Input from the

Command Line
Up to this point, we have not read any input for any of our programs from any source. All
program data has been hardcoded in the program itself. In this chapter, we will begin
exploring programming input with one of the simplest available methods—inputting from
the console's command line.

We will revisit the main() function with our added knowledge of function parameters and
arrays of strings. We will then explore how to retrieve strings via an argument to
the main() function.

The following topics will be covered in this chapter:

Understanding the two forms of main()
Understanding how argc and argv are related
Writing a program to retrieve values from argv and print them

Technical requirements
Continue to use the tools you chose from the Technical requirements section of Chapter 1,
Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Getting Input from the Command Line Chapter 20

[452]

Revisiting the main() function
The main() function is, as we have seen, the first place our program begins execution.
Recall that before execution begins, various kinds of memory are allocated within our
program space. Once memory is allocated, the system calls main() pretty much as we
might call any other function. In this regard, main() is a function like any other.

The special features of main()
However, the main() function is a special function in C with the following special
properties:

main() cannot be called by any other function.
main() is activated as the first function called when the program is invoked to
begin execution.
When we return from the main() function, execution stops and the program is
terminated.
There are only two forms of the main() function prototype:

Has no arguments at all
Has exactly two arguments—an int value and a char* array

We will explore the second form of the main() function in this chapter.

The two forms of main()
Up to now, we have been using the first form of main():

int main(void) { ... }

The second form of main() is as follows:

int main(int argc , char* argv[]) { ... }

Here, we have the following:

argc is the short name for the argument count.
argv is the short name for the argument vector.

Getting Input from the Command Line Chapter 20

[453]

When our program declares the main() function in the second form, the command-line
interpreter processes the command line and populates these two variables, passing them
into the main() function body when the system calls main(). We can then access those
values through these variable names.

It should be noted that argc and argv are arbitrary names. You might want to use
alternative names in main(), as follows:

int main(int argumentCount, char* argumentVector[]) { ... }

You could even use the following:

int main(int numArgs, char* argStrings[]) { ... }

The names of the variables used in the main() function definition are not significant.
However, what is significant is that the first parameter is an int value (with a name that
we choose) and the second parameter is an array of char* (also with a name that we
choose). argc and argv are merely common names used in the main() function
declaration.

You may sometimes alternatively see main() declared as follows:

int main(int argc, char** argv) { ... }

This form is equivalent to the others because of the interchangeability of pointer notation
and array notation. However, I find using array notation clearer in this case, and therefore
it is preferred.

We will explore how to use these parameters to retrieve the values from the string vector,
or an array of string pointers, argv.

Using argc and argv
So, while we could give alternate names for the argc and argv parameter names, we will
use these two names throughout this chapter for consistency.

When we invoke a program, we now see the following:

Memory is allocated in program space.
Command-line arguments are processed into function parameters passed into
main() or ignored if those parameters are absent.
The execution begins with a call to main().

Getting Input from the Command Line Chapter 20

[454]

The first thing to note is that every argument from the command line is broken up into
strings. A pointer to the beginning of each string is placed in argv, and argc array is
incremented. In many cases, string input is sufficient without any further processing. We
will explore converting string input into other values in the next chapter, Chapter 21,
Exploring Formatted Input.

The program name itself is always placed in argv[0]. Therefore, argc will always be at
least 1.

Each argument is separated by whitespace. We can make a single argument of several
space-separated words by enclosing the group of words in either single ('…') or double
("…") quotation marks.

A simple use of argc and argv
We can now explore command-line arguments with the following program:

#include <stdio.h>
int main(int argc, char *argv[]) {

 if(argc == 1) {
 printf(" No arguments given on command line.\n\n");
 printf(" usage: %s <argument1> <argument2> ... <argumentN>\n" ,
 argv[0]);
 return 0;
 }
 printf("argument count = [%d]\n" , argc);
 for(int i = 0 ; i < argc ; i++) {
 if(i == 0)
 printf("executable = [%s]\n" , argv[i]);
 else
 printf("argument %d = [%s]\n" , i , argv[i]);
 }
}

This program first checks whether any arguments have been passed into main() via argv.
If not, it prints a usage message and returns; otherwise, it iterates through argv, printing
each argument on a line by itself.

Enter this program into a file called showArgs.c, save it, compile it, and run it with the
following invocations:

showArgs
showArgs one two three four five six

Getting Input from the Command Line Chapter 20

[455]

showArgs one two,three "four five" six
showArgs "one two three four five six"
showArgs "one two three" 'four five six'
showArgs "one 'two' three" 'four "five" six'

You should see the following output:

Getting Input from the Command Line Chapter 20

[456]

First, no arguments are given and the usage message is printed. Next, six arguments are
given. Notice that because of the one-off issue, argc is 7, even though we only entered six
arguments. In the remaining argument examples, various placements of a comma and
single- and double-quotation mark pairs are tried. Notice that in the last example, 'two' is
part of the first parameter and "five" is included in the second parameter. You may want
to experiment further with other variations of delimiters and arguments yourself.

Command-line switches and command-line
processors
The showArgs.c program is an extremely simple command-line argument processor. It
merely prints out each command-line argument but otherwise does nothing with any of
them. In later chapters, we will see some ways that we might use these arguments.

We have been using command-line switches whenever we compiled our programs.
Consider the following command:

cc showArgs.c -o showArgs -Wall -Werror -std=c11

We have given the cc program the following arguments:

The name of the input file to compile, which is showArgs.c.
A output file specifier, which is -o.
The name of the output file, which is showArgs. This represents an argument
pair where the specifier and additional information is given in the very next
argument. Notice how the specifier is preceded by a hyphen (-).
The option to provide warnings for all possible types of warnings with -Wall.
Notice how this is a single parameter is preceded by a hyphen (-) but not with a
space separator.
The option to treat all warnings as errors with -Werror. This has a similar format
to -Wall.
Finally, the option to use the C-11 standard library with -std=c11, where the
specifier is std and the option is c11. Notice how the two parts are separated by
an equals sign (=).

This single command exhibits four different types of argument specifier formats—a single
argument, an argument pair, two arguments where added options are appended to the
specifier, and finally, a specifier using the equals sign (=) to add information to a single
argument.

Getting Input from the Command Line Chapter 20

[457]

From this, you might begin to imagine how some command-line processors can be quite
complicated as they provide a wide set of options for execution. There is no standard
command-line processor, nor a standard set of command-line options. Each set of
command-line options is specific to the given program that provides those options.

It is beyond the scope of this book to delve deeper into the myriad approaches employed
for command-line processing. Some approaches are straightforward, while others are quite
complex. Most approaches to command-line processing have evolved over time along with
the program of which they are a part. New options and new option formats were often
required and added. Old options and option formats are rarely discarded. In many cases,
the resulting command-line processor grew to become a tangled web of complex code.
Therefore, a high degree of caution is recommended when trying to modify an existing
command-line processor.

However, there are two C Standard Library routines—getopt() and
getopt_long()—that are intended to simplify command-line option processing. The older
getopt() routine, declared in unistd.h, expects single-character options. The newer and
preferred getopt_long() routine is declared in getopt.h; it is able to process both single-
character options as well as whole-word option specifiers. The following is a very simple
program using getopt_long():

#include <stdio.h>
#include <getopt.h>

static struct option long_options[] = {
 {"title", required_argument, NULL, 't'},
 {"author", required_argument, NULL, 'a'},
 { NULL, 0, NULL, 0}
};
typedef struct _book {
 char* title;
 char* author;
} Book;

int main(int argc, char *argv[]) {
 char ch;
 Book b;
 while(true) {
 ch = getopt_long(argc , argv , "t:a:" , long_options, NULL)
 if(ch == -1) break; // exit the loop
 switch (ch) {
 case 't': b.title = optarg; break;
 case 'a': b.author = optarg; break;
 default:

Getting Input from the Command Line Chapter 20

[458]

 printf("Usage: %s -title 'title' -author 'name'\n" , argv[0]);
 break;
 }
 }
 if(b.title) printf("Title is [%s]\n" , b.title);
 if(b.author) printf("Author is [%s]\n" , b.author);
 if(optind < argc) {
 printf("non-option ARGV-elements: ");
 while(optind < argc)
 printf("%s ", argv[optind++]);
 printf("\n");
 }
}

This program first sets up the long_options structure, which has two required
options—title and author. Each of these can also be set by their single-character
equivalent—'t' and 'a', respectively. It then declares a book structure to hold the values
given on the command line. In the main() function, after variables are declared, a loop is
entered to process the command-line arguments. Note that it is an infinite loop; the only
way we exit this loop is when getopts_long() returns -1 when it has no more
arguments. We test for that case and then break out of the loop.

In the call to getopt_long(), the "t:a:" parameter string indicates that each single-letter
option has an additional value field associated with it. The value of each argument is found
in the optarg pointer variable. If an invalid option is encountered, a Usage: message is
printed. After exiting the while()… loop, each argument value is printed. Finally, any
remaining command-line arguments are printed.

Then, create this program as example_getopt_long.c. Compile and run it. Try invoking
it with the following command lines:

example_getopts_long -t "There and Back" -a "Bilbo Baggins"
example_getopts_long --author "Jeff Szuhay" --title "Hello, world!"
example_getopts_long -a -t
example_getopts_long -a -b -c

You should see the following output:

Getting Input from the Command Line Chapter 20

[459]

Note that getopts_long() converts the word options into their single-character
equivalents. Also, note how several variables have already been declared by
getopts_long(). These include optarg, to hold a pointer to the argument value string,
and optind, to keep track of which index in the argument list is being processed.

Summary
We have explored the simplest way to provide input to our programs via the command
line. We first specified how the main() function can receive arguments that contain the
count and values of arguments given to the program. We saw how argc and argv are
related and how to access each argv string. A simple program to print out arguments given
to it was provided for further experimentation. We noted how all arguments are passed
into main() as strings. Once we access those arguments, we can perform further processing
on them to alter the behavior of our program. Finally, a very simple command-line
processor was provided to demonstrate the use of the getopts_long() C Standard
Library function.

In the next chapter, we will explore a more comprehensive way to receive input from the
user while a program is running. Just as printf() writes formatted data from program
variables to the console (screen), the scanf() function reads and formats data from the
console (keyboard) into program variables.

21
Exploring Formatted Input

Using console command-line arguments to get string input into our running programs is
often handy, but not very useful if we want to read lots of values of any data type while our
program is running. To do that, we need to explore how to use formatted input. Formatted
input is the opposite end of the pipe, so to speak, to formatted output. Just like we can use
formatted output with print(), various value formats can be easily read to the console by
using scanf(). Both of these functions do the heavy lifting of converting values into
desired output strings or, conversely, converting input character strings into desired values.

To understand input formatting, we will need to first understand the concept of streams.
We will then use the technique of experimentation, or more specifically, trial and
observation, to discover and verify our understanding of how C input streams operate. We
will later expand the concept of streams to include files and file processing in Chapter 22,
Working with Files, and Chapter 23, Using File Input and File Output.

As we explore formatted console input, we will also look at a few important side examples
to learn about using unformatted input and output, converting unformatted strings into
integers or floats, and finally, creating internal strings from values and reading values from
an internal string.

The following topics will be covered in this chapter:

Understanding input and output streams
Revisiting formatted console output with printf()
Exploring formatted console input with scanf()
Using scanf() to read numerical values from the console
Using scanf() to read string and character values from the console
Controlling the scanf() input field width
Exploring internal data conversion
Using sscanf() and sprintf() to convert values into and from strings

Exploring Formatted Input Chapter 21

[461]

Exploring unformatted input and output
Getting string input and output from the console using gets() and puts()
Converting strings into numbers with atoi() and atof()
Creating a sorted list of names with gets() and puts()

Technical requirements
Continue to use the tools you chose in the Technical requirements section of Chapter 1,
Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Introducing streams
In the simplest terms, a stream is a sequence of bytes transferred in one direction from its
source to its target. We have already discussed the abstract concept of an execution stream,
or the flow of compiled CPU instructions from memory to the CPU. An execution stream is
created when we successfully compile our source code files into an executable file. It is
initiated when the program is invoked from the command line and flows until the program
stops.

In the console, the input stream transfers bytes—in this case, characters—from the
keyboard to our program's memory. The console's output stream transfers characters from
our program's memory to the screen. A console, therefore, consists of a keyboard source
stream for input and a screen destination stream for output. We can think of it simply as a
pair of input and output streams, also known as I/O streams.

The standard console is enhanced by two additional features:

First, as the input stream is directed to memory, it is also redirected, or echoed, to
the output stream so that we can see each character as we type it. The echoing of
characters from the input stream to the output stream is something the Terminal
program does for us.
Second, there is a third stream—the error stream—where output is directed if for
some reason the output stream fails. For the console, the output stream and error
stream are both directed to the screen by default. The error stream, however,
could be redirected to another screen, a file on the hard drive, or to some remote
network location.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Exploring Formatted Input Chapter 21

[462]

All streams consist of bytes flowing from one device to another device. We will see, in
Chapter 22, Working with Files, that files are also streams. The flow of a stream is controlled
by bytes within the stream itself. As bytes flow from the source to the destination, some
bytes are examined by the receiving device and processed, while others are simply passed
through. Recall from Chapter 15, Working with Strings, the column of control characters.
These byte sequences cause a stream flow or the device at either end of the stream to alter
its behavior. Nearly all of the coordination between devices in a stream is handled by the C
runtime library or by the operating system.

Each stream is represented internally by a pointer to a complex data structure called FILE,
which contains the information needed to control the stream. This includes its current state
and associated data buffer. When program execution begins, the C runtime library creates
three file streams for us and automatically connects them to our program:

 #include <stdio.h>

 FILE* stdin; /* standard input: the keyboard */
 FILE* stdout; /* standard output: the screen */
 FILE* sterr; /* standard error output: the screen */

We rarely have to deal with the internal workings of these stream structures. We can, by
means of redirection, connect stdin, stdout, and stderr to files or another device
without affecting the contents of our program. We will see that printf(), scanf(), and
other console-oriented I/O functions have corresponding file stream versions that apply to
files, as well as to other device streams. These are shown in the following table:

 Output
Function

Output
Stream

Input
Function

Input
Stream

Console I/O printf() ⇒ stdout scanf() ⇐ stdin

File Streams fprintf() ⇒ A file fscanf() ⇐ A file
Memory Streams sprintf() ⇒ A string buffer scanf() ⇐ A string buffer

Notice how each output function and input function are similar in name. Also, notice how
the input or output streams go either to stdin or stdout for console I/O, to one or more
files for file streams, and to string buffers in memory for memory streams. We will explore
console I/O and memory streams in this chapter and file streams in the next chapter.

Notice that there is no entry in the table for the error stream because there is no stderr
stream function for console I/O or for memory streams. In either of these situations, we
must use the fprintf() file stream with the stderr stream specified, as follows:

 fprintf(stderr , "Oops! Something went wrong...\n") ;

Exploring Formatted Input Chapter 21

[463]

In all cases, to send error messages to the console, use the fprintf() function with the file
stream parameter set to stderr. We have already seen a statement like this one in our
linked list program in Chapter 18, Using Dynamic Memory Allocation. If you recall, it
appeared in the following function:

void OutOfStorage(void) {
 fprintf(stderr,"### FATAL RUNTIME ERROR ### No Memory Available");
 exit(EXIT_FAILURE);
}

Not every error message indicates that the error is fatal and the program must exit, as in the
OutofStorage() function. Often, stderr is used for less fatal errors, program events and
progress logging, and program troubleshooting. Remember that stderr is sent by
default to the console. This enables file output to be sent to a file, while other non-file-
oriented messages can provide immediate console feedback while the program is running.

Whenever we speak of printf(), we are also speaking of its related
functions—fprintf() and sprintf(). So, except for the different streams used in each of
these functions, what is said for one will apply to all three.

Likewise, whenever we speak of scanf(), we are also speaking of its related
functions—fscanf() and sscannf(). So, except for the different streams used in each of
these functions, what is said for one will apply to all three.

sprintf() and sscanf() require some additional considerations, which we will cover
when we explore these functions.

Understanding the standard output stream
The standard output stream is a pointer to a complex FILE structure named stdout. This
stream sends all characters to the console screen formatted by the printf() function. We
can think of this stream as a never-ending flow of characters from our program to the
screen. It may not look like that onscreen because of the control characters, which alter how
characters appear. These include carriage return (CR), new line (NL), form feed (FF),
horizontal tab (HT), and vertical tab (VT). Other control characters change how the screen
appears when we delete or rub out characters. These include backspace (BS) and delete
(DEL). Nevertheless, these characters appear in the stream flow to the console program; the
console program either simply prints them or interprets and changes the position of where
the next character will be shown on the screen.

Exploring Formatted Input Chapter 21

[464]

One complication to the flow of characters in the stream is that they are typically buffered.
That is, they are sent to a memory location—a character array of a fixed size—before being
sent to the screen. The buffer coalesces, or groups, output to the screen so that numerous
characters are output at once and not one at a time. The buffer is flushed, or sent to the
screen, either when the buffer is full, when a new line is encountered in the stream, or when
our program exits.

In fact, by default, all the FILE streams are buffered. We can see how this affects the
program behavior in the following program:

#include <stdio.h>
#include <unistd.h>

int main(void) {
 printf("You'll see this immediately.\nNow count to 5 slowly.\n");
 printf("This will appear after 5 seconds ... ");
 sleep(5);
 printf("when the buffer is finally flushed.\n");
}

In this program, we use the sleep() function declared in the <unistd.h> header file to
put the program into an idle state for 5 seconds. This program will demonstrate how the
first printf() function is output immediately while the second printf() function is only
seen after the sleep() function when the last printf() function with \n is called. To see
this in action, create a file called flush.c and enter the preceding program. Compile and
run this program. You should see the following output—but pay attention to when you see
each line of output:

Given that the sleep() function comes after the second printf() function, you might
have expected to see its output before the program slept (or went idle) for 5 seconds.
Instead, what actually happened is that without CR, the buffer is not flushed until the very
last printf() function. This experiment shows how CR flushes the output buffer
immediately, whereas a lack of \n, or CR, as in the second printf() function, prevents that
string from being flushed until a CR character is encountered or until the program exits.

Exploring Formatted Input Chapter 21

[465]

If you want to prove that the buffer is flushed when the program exits, remove the very last
\n character from the very last printf() call, save the file, then compile and rerun the
program. You should see identical behavior.

Understanding the standard input stream
The standard input stream is a pointer to a complex FILE structure named stdin. This
stream reads any characters typed from the keyboard to be formatted by the scanf()
function.

Like the output stream, by default, the input stream is also buffered. For input, this means
that characters are sent to the buffer. The buffer is not flushed until either the buffer is full
or until CR is encountered in the input stream. As we enter characters, program control is
maintained by the console and is not returned to our program until the buffer is flushed.
The processing of the input characters then appears to our program as if they were received
one at a time.

In reality, however, it is a bit more complicated than this. The console has two modes of
processing—cooked mode and raw mode.

Cooked mode uses buffered input and is the default mode unless it is explicitly changed. It
also means that we can alter our input in the buffer until we type in the CR key. Backspace
and delete work as expected in this mode so that we can edit our input in the buffer before
the buffer is flushed to our program. The console is managing the buffer in this mode. Even
for single character input, we must enter CR for it to leave the buffer and be passed to our
program.

In raw mode, each individual character is received by the console, and control is
immediately returned to our program to process that single character. The character buffer
is a single character only. No input processing is done by the console, so no editing is
possible in this mode. We will see how to put the Terminal in raw mode and perform
single-character processing after we introduce the scanf() function.

We will later see how these two modes operate in the console.

Exploring Formatted Input Chapter 21

[466]

Revisiting the console output with printf() and
fprintf()
The function prototype for printf() and fprintf() are as follows:

int prinft(const char* format , ...);
int fprintf(FILE* stream , const char* format , ...);

Spaces have been added to emphasize the common parts of each function. We can see the
console output with printf(), as follows:

int myAge = 1;
printf("Hello, World! I am %d today!\n" , myAge);

This is, in fact, a shorthand form of the fprintf() function using stdout for the file
stream parameter, as follows:

int myAge = 1;
fprintf(stdout , "Hello, World! I am %d today!\n" , myAge);

If you are so inclined, you could replace every printf(…) statement in every program
we have seen so far with its equivalent form, fprintf(stdout , …), and all the
programs would execute exactly as before. But please don't bother doing this; we have
better things to do!

It is worth emphasizing that the printf(), fprintf(), and sprintf() functions each
take values from variables that are in binary form and convert them into a string that is
written/copied to the desired output stream. For instance, the 125 value (a number) is
formatted with the %d format specifier into the '1', '2', and '5' characters, and is then
inserted into the final output string.

Exploring the console input with scanf()
The function prototypes for scanf() and fscanf() are as follows:

int scan(const char* format , ...);
int fscanf(FILE* stream , const char* format , ...);

Again, spaces have been added to emphasize the common parts of each function.

Exploring Formatted Input Chapter 21

[467]

For the console input, we can use scanf() and fscanf() interchangeably. These two
function calls are equivalent, as follows:

 scanf("%d" , &anInteger);
fscanf(stdin, "%d" , &anInteger);

Whitespace has been added to emphasize where the functions differ. The scanf(…)

function is shorthand for fscanf(stdin , …) when input is received from the
console. One major difference between scanf() and printf() is that we must pass the
address of the variable to be assigned or a pointer to the variable we wish to give a value to
the function. Recall that in C, function parameter values are passed by a copy. So, with
printf(), we only need a copy of the value to the output since printf() does not change
any values; it only displays them. However, for scanf() to be able to change the value of
the variable passed into it, we must instead pass the address of that variable.

Apart from that one difference, the format specifiers for scanf() are identical, but fewer in
number than the format specifiers for printf(). We will see, however, that their behavior
is a little bit different than for printf().

Similarly to the output functions, the scanf(), fscanf(), and sscanf() input functions
each take values from the desired input stream that are in the form of individual characters
and convert them into desired binary values. For instance, the '1', '2',
and '5' characters are received from the input stream, converted into 125 (a number) with
the %d format specifier, and then assigned/copied to the specified variable. It should be
noted that the input stream is not necessarily a valid string because of the lack of the null-
terminating character.

We will now explore how to convert characters in the input stream into binary values using
various format specifiers.

Reading formatted input with scanf()
In Chapter 19, Exploring Formatted Output, we exhaustively explored the printf() output
specifiers using a variety of programs to demonstrate how these specifiers work. We can
reuse much of that knowledge for input specifiers.

The input specifiers for scanf() are similar in syntax and meaning to the output specifiers
of printf(), except for a few differences. Therefore, it is best to consider the format string
specifiers for printf() and scanf() as only vaguely similar; do not rely on the
documentation for one as a guide for the other.

Exploring Formatted Input Chapter 21

[468]

The following differences should be noted:

printf() accepts precision specification, while scanf() does not.
printf() accepts the -, +, <space>, 0, and # flag specifiers, while scanf() does
not.
Note that the input strings may have the -, +, and/or # characters and scanf()
will interpret them as flags; however, these cannot be specified in the format
specifier.
An explicitly specified field width is the minimum for printf(); it is the
maximum for scanf().
The [] conversion specifier is unique to scanf(). It specifies a scan set and is
explored in this chapter in the Using a scan set to limit possible input
characters section.
printf() allows the field width and precision to be specified with the * and
arguments; scanf() uses * for a completely different purpose—to suppress
assignment. For instance, using * allows us to skip over an input value, if
needed.

One final difference between printf() and scanf() is that in the input strings to
scanf(), whitespace is critical in the process of parsing the input strings into values. We
will explore this behavior next.

Reading numerical input with scanf()
To begin our exploration of scanf(), we begin by reading an integer and a double from
the console. Rather than attempt to explain how scanf() interprets the input, I believe it
would be far better to first get an intuitive experience of how it works. We begin with the
following program:

#include <stdio.h>

int main(void) {
 int anInteger = -1;
 double aDouble = -1.0;
 printf("Enter an integer and a decimal number: ");
 scanf("%d%lf" , &anInteger , &aDouble);
 printf("1. integer: %d\n" , anInteger);
 printf("2. double: %lf\n" , aDouble);
}

Exploring Formatted Input Chapter 21

[469]

This simple program first initializes values that will be used to store input. If scanf() can't
assign values, we will see these default values. We will use two simple numbers for now.
However, as we will see, if the user enters these numbers, we will be unable to tell whether
they are default values that were not assigned by scanf() or whether the user actually
entered these numbers.

The program then prints a prompt for the user to enter an integer and a decimal number. It
then reads what is entered using scanf() and tries to assign values to the two variables.
The last two statements print the values of the two variables. The essential work of this
program takes place in the single scanf() statement. Notice that even though there is no
space between %d and %lf, whitespace remains an important consideration for input.

Create a file named read2Numbers.c and enter the preceding program. Compile it and
run it. You should run it five times. Each time you run it, use the following input for each
run to see how scanf() does its best to interpret what it is given:

1234 5678.9012<return>

<return>
 1234<return>
 5678.9012<return>

1234.5678<return>

1234 hello 5678.9012<return>

hello 1234 5678.9012<return>

Each test case ends with a final <return> mark. If you run read2Numbers with the
preceding input, you should see the following output:

Exploring Formatted Input Chapter 21

[470]

In the first test case, an integer and a decimal number are entered, separated by a single
space. scanf() easily interprets these values, as expected.

The second test case begins with a <return> mark; scanf() treats it as whitespace, along
with the leading whitespace on the next line, ignoring it. It then interprets the integer and
again treats all the whitespace up to the decimal number, which it then interprets, as
expected. This example emphasizes how repeated, consecutive whitespace is ignored.

In the third test case there appears to only be a decimal number. However, scanf()
interprets the digits up to the dot (.) as an integer and then interprets the dot (.) to be the
beginning of a decimal number. In this case, there is no whitespace at all and the
interpretation of integer digits ends with the decimal point.

Exploring Formatted Input Chapter 21

[471]

The last two test cases show how scanf() interprets, or fails to interpret, integer digits and
decimal digits when alphabetic characters—not specified in the format specifier—interrupt
the orderly interpretation of digits. In the fourth test case, only the integer is correctly
interpreted; for the decimal value, we see its initial value printed. In the fifth case, neither
value is interpreted and we see both of the initial values printed. Notice that even though
integer digits and decimal digits exist before <return>, they are ignored because the
alphabetic characters have interrupted the scanf() attempt to follow the format specifier.

This situation is not ideal since we need to have a better idea about when scanf() reads
one or more values and when it doesn't. Fortunately, there is a way to know when
the scanf() values have been read. This involves using the return value from
scanf()—an integer that reports how many values have been read with scanf(). Copy
read2Numbers.c into read2NumbersUsingResult.c and modify it to match the
following program (the changes are in bold):

#include <stdio.h>

int main(void) {
 int anInteger = -1;
 double aDouble = -1.0;
 int numScanned = 0;

 printf("Enter an integer and a decimal number: ");
 numScanned = scanf("%d%lf" , &anInteger , &aDouble);
 printf("scanf() was able to assign %d values.\n" , numScanned);
 if(numScanned > 0) printf("1. integer: %d\n" , anInteger);
 if(numScanned > 1) printf("2. double: %lf\n" , aDouble);
 printf("\n");
}

In this program, instead of ignoring the result returned from scanf(), we capture it by
assigning it to a variable and then we use that value to determine which input values have
been read. If numScanned is 0, no values have been successfully interpreted by scanf(). If
numScanned is 1, only the first input value was successfully interpreted and assigned by
scanf().

Save this program. Compile and run it five times using the same input used earlier. You
should see the following output:

Exploring Formatted Input Chapter 21

[472]

The results of this input are identical to the earlier program. The first three input cases
assign both values, as before. The last two test cases also assign or fail to assign values, as
before. However, because the program now has more information from
the scanf() function, it can use that information to react to input if needed.

Now that we have seen how to input numbers, we can move on to conversions
using scanf() to read strings and characters.

Exploring Formatted Input Chapter 21

[473]

Reading string and character input with scanf()
One way to read a string is to use scanf() with the %s specifier. We will also see some
other ways of doing this later in this chapter. The %s specifier assigns a sequence of non-
whitespace characters to the given array. As with numbers, leading whitespace is skipped.
Recall that whitespace can be ' ', '\t', '\n', '\r', '\f', or '\v'. Conversion stops on
the first occurrence of whitespace after one or more instances of non-whitespace or at the
maximum field width, if specified. Otherwise, the array to which the input string is
assigned must be large enough to hold the string plus the terminating NUL character.

The following program demonstrates this effect:

#include <stdio.h>
const int bufferSize = 80;
int main(void) {
 char stringBuffer[bufferSize];
 printf("Enter a string: ");
 scanf("%s" , stringBuffer);
 printf("Processed string: [%s]\", stringBuffer);
}

The most significant parts of this program are in bold. It first allocates a character array to
hold 79 characters (don't forget the NUL character). After providing a prompt to the user, it
uses scanf() with the %s format specifier to read a string into that array. In this case, no
maximum field width is given. Note how the array name, the address of the first element of
the array, is used as a pointer. Once a string is interpreted and assigned, the last statement
prints out the result of the scanf() interpretation.

Create a file named readString.c and enter the preceding program. Compile and run the
program with the following three input test case strings:

Anything up to the white space<return>

Every_thing%before;any:white'space\(will%be read into an array.)<return>

 Skipping initial white space.<return>

If you run the program three times with this input, you should see the following output:

Exploring Formatted Input Chapter 21

[474]

In the first case, all characters up to the first <space> character are read into the array; the
rest are ignored. In the second case, any and all characters are read until any whitespace is
encountered. The third case shows how the initial whitespace is ignored.

The next program illustrates not only how to read a character but also how to use
whitespace between input values. The following program will read a character without
whitespace and with whitespace in the format specifier:

#include <stdio.h>
int main(void) {
 char aChar;
 int anInt1, anInt2;
 int numScanned;
 printf("1st: Enter <integer><char><integer>: ");
 numScanned = scanf("%d%c%d" , &anInt1 , &aChar , &anInt2);
 printf("Values scanned = %d. Character selected: [%c]\n" ,
 numScanned , aChar);

 printf("2nd: Enter <integer> <char> <integer>: ");
 numScanned = scanf("%d %c%d" , &anInt1 , &aChar , &anInt2);
 printf("Values scanned = %d. Character selected: [%c]\n\n" ,
 numScanned , aChar);
}

After declaring the variables, this program has two parts. In the first part, it gives an input
prompt. It then accepts input for an integer, a character, and another integer. Notice that
there are no spaces in the format specifier. Then, it provides some feedback about what it
could interpret. In the second part, it does the same as the first part, except there is a single
space in the format specifier between the first integer and the character.

Exploring Formatted Input Chapter 21

[475]

We will see how a space in the format specifier changes how the character is or is not
interpreted. This will also change how the second integer is or is not interpreted. To see
how this works, we'll use the following input:

123m 456<return>

123 m456<return>

123 w 456<return>

The first input has no whitespace before the character and some whitespace before the
second integer; this is to match the first format specifier. The next input has some
whitespace before the character and no whitespace before the second integer; again, this is
to match the second format specifier. The last input has some whitespace before and after
the character; this does not match the first format specifier, so we can see what
scanf() tries to do with it.

Create a file called readChar.c. Then, open the preceding program, save it, and compile it.
Run the program twice. In the first run, we'll input two lines. In the second run, we'll input
just the last line. Notice that we are only using three inputs. The reason for this will become
obvious after we input the third line the second time we run the program. Your output
should appear as follows:

We can see in the first run that both of the scanf() statements are able to interpret an
integer, a character, and another integer. Notice that for integers, the initial whitespace is
ignored. However, for a character, the initial whitespace is only ignored if the format
specifier has a space before %c.

Exploring Formatted Input Chapter 21

[476]

In the second run with the third input line, two of the three variables are read by the first
scanf() statement—the 123 integer and the ' ' character, which also happens to be
whitespace. scanf() then encounters the 'w' character, which causes the third variable
interpretation to fail. But there is still input in the buffer. So, when the next
scanf() statement encounters what's left in the buffer, it expects a decimal digit but
instead finds the 'w' character and fails completely. The program exits and the buffer,
which is still not completely processed, is flushed.

You may have noticed that the third input line will be correctly interpreted by the "%d
%c%d" format specifier but it causes mayhem when given to the "%d%c%d" format specifier.
You may want to try additional variations of input with this program.

You may also get the impression that scanf() can be finicky, with emphasis on the icky
part. Be aware that the scanf() family of routines is ideally suited to reading input from
data files created by other programs; these programs would provide a much higher degree
of consistency than most humans can muster.

Using a scan set to limit possible input
characters
A scan set is a group of characters that make up a set and are interpreted as valid characters
in the input. A scan set is specified in the format string by the %[and] characters; any
characters within the square brackets make up the scan set. The scan set may indicate that
either the characters should be included in the input or the characters should be excluded.
A circumflex (^) used as the first character indicates negation of the set and indicates all
characters except those specified. Consider the following scan sets:

Scan set Description
%[aeiouy] Any of the specified six characters—a, e, i, o, u, and y—are valid input.
%[^aeiouy] Any characters except the specified six characters are valid input.
%[\t,] A space, horizontal tab, and a comma are valid input.

 %[^,.;: \t] Any characters except a comma, period, colon, semi-colon, and horizontal tab are valid
input.

Input is successfully converted if any inputted characters are in the scan set or if any input
characters are not in the negated scan set. Input conversion stops either when the end of file
is reached or if the input character is not in the scan set (or in the negated scan set).

Consider the following program:

Exploring Formatted Input Chapter 21

[477]

#include <stdio.h>
const int bufferSize = 80;
int main(void) {
 char stringBuffer[bufferSize];
 printf("Enter only vowels: ");
 numScanned = scanf("%[aeiouy]" , stringBuffer);
 printf("Processed string: [%s]\n\n" , stringBuffer);
}

This program specifies that the input string only contains the a, e, i, o, u, and y characters.
This program is nearly identical to the readString.c program we created earlier. The
only difference is the use of a scan set.

Create a file called readScanSet.c, type it in, and save it, then compile and run it. Run it
several times using the following input:

aayyeeuuiioo<return>

aeimwouy<return>

a e i o u y<return>

You should see the following output:

The first line of the input is all vowels, so all of it is converted into the input string. The
second line of the input contains some characters that are not in the scan set; therefore,
conversion stops at the first non-vowel character, and only the first three vowels are
converted into the input string. The last line of the input contains spaces, which are again
characters that are not part of the scan set; conversion stops at the first space and only 'a'
is converted into the input string.

Exploring Formatted Input Chapter 21

[478]

Using a scan set is handy if you want to limit what characters can be entered. One example
would be to limit the user's response to either y for yes or n for no. This can be
accomplished by using the %[YyNn] format specifier.

Controlling the scanf() input field width
Recall how with printf(), we could control the minimum length of the output string. In a
similar way, we can control the maximum length of the input string for conversion with a
specifier. For example, %3d will accept no more than three digits for conversion into an
integer. The following program reads a group of digits, each of which is intended to
represent a date—the first four digits for the year, the next two for the month, and the last
two for the day:

#include <stdio.h>
int main(void) {
 int year , month , day;
 int numScanned;
 while(printf("Enter mmddyyyy (any other character to quit): "),
 numScanned = scanf("%2d%2d%4d" , &month , &day , &year) ,
 numScanned > 0)
 printf("%d/%d/%d\n" , month , day , year);
 printf("\nDone\n");
}

After declaring variables to hold the input values, a while()… loop is used to repeatedly
accept eight digits to be converted into a date.

Create a file named readWidth.c, type in the preceding program, save it, and compile it.
To see how this behaves, run the program using the following input:

01012020<return>
 02 02 2021<return>
12252019<return>
 9302019<return>
12 52020<return>
7/4/2019<return>

Exploring Formatted Input Chapter 21

[479]

You should now see the following output:

The first three test inputs all work as expected. In each case, the month, day, and year are
correctly interpreted, which we can see from the printed date. Even the second input line,
with spaces before each decimal value, is correctly interpreted. However, things begin to go
awry in the fourth and fifth test cases. In these, we have made the incorrect assumption that
whitespace is considered part of the maximum field width when it is not. In fact,
whitespace is considered separate from the input field width, as these test cases show. In
the fourth test input, scanf() skips the whitespace and reads the month as 93, the day as
02, and the year as 019. In the fifth test input, scanf() reads the month as 12, then skips
the whitespace to read the day as 52 and the year as 020. Finally, on the last input,
scanf() reads the month as 7, but then conversion stops at /. We can see how it assigns
only the month and prints out 7/52/20, where the values of the day and year are
unchanged from the previous conversion. On the next iteration of the loop, / is interpreted
as a non-digit, which caused the loop to fail and the program to exit.

Is there possibly a better solution? Actually, yes, there is. A better solution is to use a single-
character input, %c, and to add the non-assignment flag, *. If the non-assignment flag is
specified, the input is interpreted but not assigned to any variable. They do not cause the
conversion to stop and are, in fact, a required part of the conversion.

Exploring Formatted Input Chapter 21

[480]

The following program illustrates this:

#include <stdio.h>
int main(void) {
 int year , month , day;
 int numScanned;
 while(
 printf("Enter mm*dd*yyyy (any other character to quit): "),
 numScanned = scanf("%2d%*c%2d%*c%4d" , &month , &day , &year) ,
 numScanned > 0)
 printf("%d.%d.%d\n" , month , day , year);
 printf("\nDone\n");
}

The only difference between this program and the preceding one, apart from the slight
change to the user prompt, is the format specifier:

"%2d%*c%2d%*c%4d"

Note the %*c specifier between each integer. This specifier tells scanf() to interpret a
single character between each integer. This can be any character in the input stream, even
whitespace. However, the * flag tells scanf() not to assign that input to any variable. In
this way, we can expand on the scanf() function's pattern-matching abilities. However,
we have to alter the input to match this new pattern. We will use the following input for
this program:

01x01x2020<return>
 02 02 2021<return>
12^25^2019<return>
 9!30!2019<return>
12x 5y2020<return>
7/4/2019<return>
x<return>

Notice that these are similar to the preceding input, but our new pattern requires us to have
at least one character, any character, between each integer. Even a single whitespace
character will be considered a valid single character and will be interpreted.

Exploring Formatted Input Chapter 21

[481]

With this new input, let's see how this program behaves. Copy readWidth.c into
readDate.c and make the required modifications to the user prompt, the format specifier,
and the printf() string. Save, compile, and run the program. You should see the
following output:

In each input case, scanf() is able to correctly interpret the date values, as well as the non-
assigned characters. Notice that any character in this format specifier can be used as an
integer delimiter. There can also be additional whitespace in the input without ill effect.

We have now explored all of scanf() capabilities. We might correctly conclude that while
the use of simple input format specifiers can be somewhat finicky, we can make them less
so by setting the field width, scan sets, and non-assignment flags.

We can now explore other ways to perform data conversions to and from strings and
values.

Exploring Formatted Input Chapter 21

[482]

Using internal data conversion
It should be fairly obvious that the ability for printf() to convert binary values into
strings and of scanf() to convert strings into binary values is very powerful. These
facilities are not constrained to console streams, nor are they constrained to file streams.
Whenever we need to carry out internal data conversions, we have the same facilities
available to us with the related sprintf() and sscanf() functions. Rather than use
streams, these functions use strings—arrays of characters—as their initial input and our
resultant output.

We have seen how scanf() can be finicky. One way to mitigate irregular or troublesome
input is to read that input into a large string buffer and then process that string buffer in
various ways with sscanf().

The function prototypes for sprintf() and scanf() are as follows:

int sprintf(char* buffer , const char *format , ...);
int sscanf(char* buffer , const char *format , ...);

The format specifiers used in these functions are identical to their stream counterparts.
Therefore, we do not need to revisit each flag and feature of the format specifiers for
sprintf(), nor for those of sscanf().

However, unlike the stream versions, when we use sprintf() and sscanf(), we must be
more careful about the sizes of the character buffers.

Using sscanf() and sprintf() to convert values into
and from strings
Typically, when using sscanf() to interpret a string buffer into values, the string buffer is
already known or has been allocated elsewhere. sscanf() converts the string into the
desired values, assigning them to variables. The sizes of these variables are known by their
data type.

On the other hand, when using sprintf() to convert values into characters, the final
output buffer size required is rarely known. We can either exercise great care to allocate a
specific array size or, more commonly, we can simply allocate an array that is reasonably
larger than expected, ignoring any unused or even unneeded buffer space.

Exploring Formatted Input Chapter 21

[483]

The following program demonstrates the use of sscanf() and sprintf():

#include <stdio.h>
#include <string.h> // for memset

const int bufferSize = 80;

int main(void) {
 int anInteger = -1;
 double aDouble = -1.0;
 int numScanned = 0 , numPrinted = 0;
 char sIn[] = "1234 5678.9012";
 char sOut[bufferSize];
 memset(sOut , 0 , bufferSize);

 printf("Using sscanf() on [%s]\n" , sIn);
 numScanned = sscanf(sIn , "%d%lf" , &anInteger , &aDouble);
 printf("sscanf() was able to assign %d values.\n" , numScanned);
 printf("1. integer: %d\n" , anInteger);
 printf("2. double: %lf\n\n" , aDouble);
 puts("Using sprintf() to format values to string buffer:");
 numPrinted = sprintf(sOut , "integer=[%d] double=[%9.4lf]" ,
 anInteger , aDouble);
 printf("%d characters in output string \"%s\"\n", numPrinted,sOut);
}

Apart from the use of I/O buffers (character arrays), this program is nearly identical to
read2NumbersUsingResult.c, which we created at the beginning of this chapter. Instead
of reading 1234 and 5678.9012 from the input stream, these values are now found in
the sIn[] array buffer. Instead of writing to stdout, values are output to the sOut[] array
buffer, whose size is a generous 80 characters, or about the length of a standard console
line. Remember that sOut[] can hold a string of up to 79 characters, with the 80th character
being the required NUL character.

After allocating and initializing variables and buffers, the program uses sscanf() to
convert the input buffer into two numbers. We use %s to show the contents of the input
array.

Finally, the program uses sprintf() to convert those values back into a string in the
output buffer. Again, we use %s to show the contents of the output buffer. This program
introduces the puts() function, which is a simplified version of printf(). puts() simply
prints the given string to stdout and is the equivalent of printf("%s\n"). The input
counterpart to puts() is gets(), which we will encounter a little later in this chapter.

Exploring Formatted Input Chapter 21

[484]

Create a file named internalFormatting.c, enter the preceding program, save it,
compile it, and run it. You should see the following output:

We can see that sscanf() was able to convert and correctly assign two values. We can also
see that sprintf() formatted those values into a string of 33 characters. Note that this
count of 33 characters does not include the NUL character.

Converting strings into numbers with atoi() and
atod()
Another way to convert strings into values is to use the conversion functions declared in
stdlib.h—ASCII to integer (atoi()) and ASCII to float (atof()). These functions take a
string buffer as their function parameter and return a value of the relevant type. atoi()
returns an int value while atof() returns a double value. These functions are based on
more general strings to the <type> functions—strtol(), strtoll(), strtod(),
strtof(), and strtold(), where l is a long integer value, ll is a long long integer
value, d is double, f is a float value, and ld is a long double value.

The ato<type>() functions assume a single value is given in the input array. The
strto<type>() functions have additional parameters that allow them to convert either the
whole string or a smaller part of a larger string.

 We don't always need the specificity or flexibility that the strto<type>() functions
provide. The following program demonstrates the conversion of strings into an integer and
double:

#include <stdio.h>
#include <stdlib.h>

int main(void) {

Exploring Formatted Input Chapter 21

[485]

 int anInteger = -1;
 double aDouble = -1.0;
 char sInteger[] = "1234" ;
 char sDouble[] = "5678.9012";
 printf("As strings: integer=\"%s\" double=\"%s\"\n" ,
 sInteger , sDouble);
 anInteger = atoi(sInteger);
 aDouble = atof(sDouble);
 printf("As values: integer=[%d] double=[%lf]\n\n" ,
 anInteger , aDouble);
}

This program is very similar to the previous program, but instead of using a single
sscanf() function, it uses atoi() and atof() to convert an integer string and a double
string into their respective values. atoi() and atof() are convenient and simple to use,
but are less flexible than their strto<type>() cousins and sscanf(). If the input data is
irregular or not well-formed, a much more complicated string conversion algorithm may be
devised as needed using all of these functions.

We have now completed our exploration of formatted input with the scanf() family.
However, this chapter would not be complete without a brief exploration of unformatted,
or raw, input and output.

Exploring unformatted input and output
Not every string input needs to be converted into some binary value. Often, we simply
need to read or write strings without any additional formatting. There is a family of
unformatted string I/O functions that can be used to read or write entire lines of characters
without any formatting applied. However, these functions require each string to be formed
into lines. A line is loosely defined as a string that is terminated by the <newline>
character. Each of these has a console version as well as a file/stream version. For the
remainder of this chapter, we will briefly explore this family of functions.

Exploring Formatted Input Chapter 21

[486]

Getting the string input and output to/from the
console
To read and write a line of text, there are the puts() and gets() console functions and
their stream equivalents, fputs() and fgets(), as in the following table:

 Output
Function

Output
Stream

Input
Function

Input
Stream

Console I/O puts() ⇒ stdout gets() ⇐ stdin

File Streams fputs() ⇒ A file/stream fgets() ⇐ A file/stream

The puts() and fputs() functions write the given string to the output stream or file,
adding <newline> to the end of the string.

The gets() and fgets() functions read from the input stream or file until <eof> or
<newline> is encountered. The <newline> character, if encountered, is retained. With
gets(), no limit for the number of characters to be read can be specified. On the other
hand, fgets() must be given the maximum number of characters to be read; it will read
up to that limit unless <eof> or <newline> are encountered.

Using the simple input and output of strings with
gets() and puts()
The following program demonstrates the use of gets() and puts():

#include <stdio.h>

const int bufferSize = 80;

int main(void) {
 char stringBuffer[bufferSize];

 printf("Enter a string: ");
 gets(stringBuffer);
 puts("You entered:");
 puts(stringBuffer);
}

Exploring Formatted Input Chapter 21

[487]

This program first declares a string buffer. Next, it provides a user prompt, and then it
reads the input into the string buffer with gets(). It then calls puts() twice—once to give
a label string and again to write out what the user entered.

You may recall that this program is very similar to readString.c, which we created
earlier. Copy the readString.c program into the readString2.c file and modify it to
match the preceding program. Save, compile, and run it. You should see something like the
following output:

Notice that the C runtime gave a warning about using gets(); we will explain this in the
subsequent section. Also, notice that each puts() statement ends with a
<newline> character.

You can see that using gets() and puts() make this program somewhat simpler than the
original readString.c program, but not by much. While puts() can be used for simple
output, gets() must be used with great care, if at all.

Understanding why using gets() could be dangerous
There is a significant difference between gets() and fgets(). The following function
prototypes for these two functions highlight their differences:

char* gets(char* str);
char* fgets(char* str , int size , FILE* stream);

From this, we see that gets() requires no limits on how many characters it reads;
therefore, gets() has the potential to read an infinite amount of input. On the other hand,
fgets() must be given a maximum number of characters to be read in the size
parameter. fgets() will read up to size-1 characters unless EOF or <newline> are
encountered.

Exploring Formatted Input Chapter 21

[488]

Because there are no limits on the length of the string to gets(), it has the potential to read
beyond the size of the string buffer. If this happens, in a best-case scenario, mayhem will
ensue and the program will crash. In a worst-case scenario, malicious input could be
devised such that the program does not crash and causes control to extend beyond the
program. This is a big security risk, which is why gets() is unsafe.

The solution is to completely replace any gets() function with the fgets() function. We
will do this in the following section.

Creating a sorted list of names with fgets() and
fputs()
To finish up this chapter, we will create a program that uses fgets() to get a list of names
as input, sorts them into an array, and then prints the sorted array using fputs(). Create a
file named nameSorter.c and begin by entering the following declarations, function
prototypes, and the main() routine:

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

const int listMax = 100;
const int stringMax = 80;

typedef char string [stringMax];

void addName(string* names , string newOne , int* listSize);
void printNames(string* names , int listSize);

void removeNewline(string s) {
 int len = strlen(s);
 s[len-1] = '\0';
}

int main(void) {
 string newName;
 string nameList[listMax];
 int numNames = 0;
 while(printf("Name: %d: ", numNames+1),
 fgets(newName , stringMax , stdin),
 removeNewline(newName) ,
 strlen(newName) > 0)

Exploring Formatted Input Chapter 21

[489]

 addName(nameList , newName , &numNames);
 printNames(nameList , numNames);
}

We need the stdio.h header file for any I/O functions; we need string.h for strlen(),
strcmp(), and strcpy() and we need stdbool.h for the bool type. We then declare
some global constants—listMax and stringMax—to limit the size of the list of names and
the length of each name. For convenience, we use typedef for an array of the 80 characters
to be known in this program as the string. Anywhere that we declare, say, string aName,
we are really declaring char aName[stringMax]. Likewise, when we see string*
names, this is a synonym for char* names[stringMax]—a pointer to a character array of
the 80 characters of our program.

In main(), we declare a temporary character array, newName, and a two-dimensional array
of the 100 strings or an array of the 100 names, each consisting of an array of the 80
characters, named nameList. The numNames variable keeps track of how many names have
been entered.

We use a while()… loop to repeatedly call addName() to add a name to our list. There is a
lot of work going on in the <conditional-expression> statement of this loop; four
statements, actually. The while()… loop employs a compound conditional expression that
first gives a prompt, then uses fgets() for the name, and finally, tests the length of the
entered string. If strlen() is 0, the while()… loop terminates. In the next chapter, we
will deal with the unnecessary complexity we have created here.

Finally, the program prints out the list with a call to printNames().

Notice how through the use of a single typedef specifier and the two addName() and
printNames() functions, our main() routine is both compact yet clear. We can see the
overall workings of the program in the eight lines of main(). Of course, some of the more
interesting parts of the program are in the sub-functions.

Once you have opened the first part of program, save the file but continue to edit it. The
central work of the program occurs in the addName() function, as follows:

void addName(string* names , string newName , int* pNumEntries) {
 if(*pNumEntries >= listMax) { // List is full.
 puts("List is full!");
 return;
 } else {
 int k = 0;
 bool found = false;
 while(!found && k < *pNumEntries)

Exploring Formatted Input Chapter 21

[490]

 found = (strcmp(newName, names[k++]) < 0);

 if(found) {
 k-- ; // newName goes before k.
 for(int j = *pNumEntries ; j > k ; j--) {
 strcpy(names[j] , names[j-1]);
 }
 }
 strcpy(names[k] , newName); // Insert newName at k-th position.
 (*pNumEntries)++;
 }
 return;
}

This function takes as its parameters a pointer to the first element of our array of names, a
string that is the newName parameter to be added, and a pointer to numEntries because
this value will change within this function.

The first thing to do is to check whether the list of names is full; if so, print a message and
return. This is a simple approach; a better one would be to return either a Boolean or some
value to indicate success/failure, then act on it in main(). If the list is not full, we then
figure out where in the array to insert the new new name with a while()… loop—this will
be somewhere in the middle or at the very end of the list. We use
the found Boolean variable to determine whether the name needs to be inserted
somewhere in the middle of the array. In this case, an insertion at the very beginning of the
list is the same as if it were inserted anywhere else in the list, except at the end.

If newName needs to be inserted somewhere in the middle of the list, which is an array, we
have a new problem. Array elements are sequential but not dynamic. You can not simply
insert an element into the middle of an array, or else you might overwrite an existing value.
Therefore, we need to first make room in our array for newName. In other words, we have to
open up a free slot in the array for the new element. To open a free slot, we start at the last
entry in our array and copy it back one place. So, if the last element is at index 9, we copy it
to index 10. This opens a slot in front of that element. We continue copying elements back
until we arrive at the desired location in the array. When we are done, we simply copy
newName into the opened array entry. If newName needs to be inserted at the very end, we
don't need to open up an array element; we just copy newName to the last array element.
Before returning to main(), numEntries is incremented.

There are many ways to sort a list of strings. That is one of the main topics of a course on
algorithms. For reference, this algorithm is known as a simplified form of an insertion sort.
That is, as each element is inserted, it is inserted in its proper place within the sorted list. In
this way, the list is always in a sorted state.

Exploring Formatted Input Chapter 21

[491]

Once you have entered the addName() function, save the file. We are now ready to
complete our program with the printNames() function:

void printNames(string *names , int numEntries) {
 printf("\nNumber of Entries: %d\n\n" , numEntries);
 for(int i = 0 ; i < numEntries ; i++) {
 fputs(names[i] , stdout);
 fputc('\n' , stdout);
 }
}

This function takes as its parameters a pointer to the array of names and the number of
entries. We are not changing numEntries, so we don't need to pass a reference (pointer) to
numEntries; we can simply pass a copy of the value of numEntries. This function prints
an informational line and then employs a for()… loop to print each name in the array
using fputs().

Save the file, compile it, and run it. Enter names that would be entered at the beginning,
somewhere in the middle, and at the end of the list as it is running. You should see
something like the following output:

Exploring Formatted Input Chapter 21

[492]

In my sample input, I entered seven names in apparently random order. Some names were
inserted at the front of the list, some were inserted at the back of the list, and the rest were
inserted somewhere in the middle. When I entered a blank string, the sorted list of names
was printed. So, we know our insertion sort is working as expected. You might want to run
this several times, each time with names in a different order.

We will revisit the insertion sort in Chapter 23, Using File Input and File Output. When we
do so, the names will be read from a file, and instead of using an array, we will revisit our
dynamic linked list to sort the names. Then, we'll print the sorted list out to a file.

Summary
Just as we thoroughly explored formatted output in an earlier chapter, in this chapter, we
nearly exhaustively explored formatted input. We began with a new understanding of I/O
streams. We learned how a stream is a flow of bytes from a source to a destination. For the
console, the streams are the pre-defined stdin, stdout, and stderr variables. We also
learned how nearly all of the input and output functions have multiple forms, depending
on which stream is being used.

Once we learned about streams, we then began our exploration of input stream format
specifiers. Much of what we learned is borrowed from our exploration of output format
specifiers. We wrote simple programs to explore how to input integers, decimal numbers,
strings, and characters. We also learned about, through the programs we wrote, scan sets,
input field width control, and the non-assignment specifier. All of these expanded our
ability to convert various forms of input data streams. After all that we have explored, it
should be obvious that while input format specifiers are similar to output format specifiers,
they are not identical; they should not be considered interchangeable as each has its own
set of unique functionality.

Before closing out this chapter, we explored various methods of internal formatted data
conversion. These involved sscanf(), ssprint(), atoi(), and atof(). Finally, we
explored unformatted I/O with fputs() and fgets(). These were demonstrated with
the nameSorter.c insertion sort program, which we will revisit in a later chapter.

In the next chapter, we will expand our knowledge of file streams. We will see how they are
similar to stdin, stdout, and stderr, but we will also see why we need to learn how to
create, open, read, write, and perform other manipulations that are unique to files.

22
Working with Files

We have seen how to get data to and from the console via output and input streams. The
next step in our exploration of input and output streams is to be able to access a persistent
storage mechanism, one where we can save our data, exit the program, and then use it
later. Data stored persistently, from one invocation of a program to the next, is saved in a
file via standard file operations. Persistently stored data—that is, files—not only exists from
one program invocation to the next but also remains in existence after the computer is
turned off and then restarted.

In persistent storage, files are the basic entity of storage. In this chapter, we will present the
essential properties of files and some basic manipulations that can be performed on them.
We will also consider some of the functions that are unique to file manipulations. We will
touch briefly on the function of the filesystem, the part of the operating system that
manages the organization of files on persistent media.

In this chapter, we are going to explore the very basics of file manipulation in our own C
program. In the next chapter, we will perform more interesting and useful file
Input/Output (I/O) operations. This chapter should be considered a prerequisite
for Chapter 23, Using File Input and File Output.

The following topics will be covered in this chapter:

Expanding our knowledge of streams
Understanding the properties of the FILE streams
Introducing opening and closing streams
Understanding various operations on each type of stream
Differentiating between operations on text and binary files
Introducing filesystem concepts
Understanding file paths
Understanding filenames
Performing basic open/close operations on files

Working with Files Chapter 22

[494]

Technical requirements
Continue to use the tools you chose from the Technical requirements section of Chapter 1,
Running Hello, World!.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Understanding basic file concepts
Up to this point, data inputs and outputs have moved into and out of our C programs via
streams through scanf(), printf(), or other related I/O functions. However, most data
exists on computers in files. Files represent persistent data storage in that they exist
between invocations of any programs and exist even when the computer is turned off.

Any file will have been created because a program captured input from the user and saved
it to a storage medium. The files could've been modified by yet another program and then
saved, they could have been copied by any number of programs, or they could have been
created from other files by yet another program. Ultimately, nothing happens to a file
unless a program does something to it.

Revisiting file streams
A stream is the means of transferring data, specifically bytes, between any device and a
program. Streams are device-oriented. Devices, as we have seen, include a keyboard and
screen. These are associated with the stdin and stdout predefined streams. A file is an
abstract data storage device. Other devices include hard disks, Solid-State Drives (SSDs),
printers, Compact Discs (CDs), Digital Video Discs (DVD), and magnetic tape devices.

For the movement of data—that is, a stream—to exist, there needs to be a connection from
one device to the program to be opened for the data transfer to take place. When we run a
C program, the connections to stdin, stdout, and stderr have already been made by the
C runtime library for us. For any other kind of stream, we must explicitly make that
connection and open a stream.

C supports two types of streams—a text stream and a binary stream. A text stream consists
of lines of bytes, primarily printable characters in the range of 32 to 128; these are readable
to humans. The added constraint is that each line of bytes should end with '\n'.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Working with Files Chapter 22

[495]

Text streams are sometimes called sequential access streams because each line of text can
vary in length, so it would be nearly impossible to position the file at the beginning of any
one line with a simple offset. The file must be read sequentially from beginning to end to be
properly interpreted.

A binary stream is byte-oriented (using the full 8 bits) and is only intelligible to other
programs. We have been using both of these stream types from the very beginning of this
book. We generated text streams with scanf(), printf(), and other related
functions. Binary streams were used when we created executable files and ran them on the
console.

A binary stream can either be a collection of binary data, such as an executable file, or it can
be a collection of fixed-length records or blocks of data, in which case it is sometimes called
a random access stream. A random access stream is very much like an array of structures,
where an offset to the beginning of any structure can be a simple calculation of the x record
number and the size of record. The retrieval of individual records is done directly and,
therefore, relatively quickly (compared to sequential access files). Random access files are
common in transaction-oriented processing systems, such as banking systems, airline
reservations systems, or point-of-sale systems.

So, while there are various types of files, files and streams are closely related. Through the
creation of a stream, data moves to and from a file and is persistently stored for later use.

Understanding the properties of the FILE streams
We encountered the FILE structure in Chapter 21, Exploring Formatted Input. This structure
consists of information needed to control a stream. It holds the following:

A current position indicator: This is relevant if the device has a beginning and
an end, such as a file.
An End-of-File (EOF) indicator: To show whether we are at the end of the file or
not.
An error indicator: To show whether an error occurred.
A data buffer: When in buffer mode, data is temporarily stored here.
A buffer state: Indicates what kind of buffering is in use.
I/O mode: Indicates whether this is an input, output, or update stream. An
update stream performs both input and output; it requires advanced file
manipulations to use properly.

Working with Files Chapter 22

[496]

Binary or text mode: Is the stream a text stream or a binary stream?
An I/O device identifier: A platform-specific identifier of an associated I/O
device.

We never access these fields directly. Instead, each field, if accessible, has an associated file
function. For instance, to check the EOF, call the feof() function; to check for any error
conditions, call the ferror() function; and to clear any error condition, call the
clearerr() function.

Some of these properties are set when the stream is opened and others are updated as the
stream is manipulated.

A file stream, declared as a FILE* variable, is also known as a file descriptor.

Opening and closing a file
To create a stream, a filename, described in the following section, and an I/O mode must be
specified.

There are three general I/O modes that are specified with character strings, as follows:

r: Opens an existing file for reading. It fails if the filename does not exist.
w: Opens a file for writing. If the file exists, existing data is lost; otherwise, the file
is created.
a: Opens a file for appending. If the file exists, writing commences at the end of
the file; otherwise, the file is created.

These are all one-way modes. That is, a file opened for reading with r can only be read; it
cannot be updated. Two-way modes exist by appending + to each of the preceding
modes—for example, r+, w+, and a+. When files are opened for reading and writing, care
must be exercised to re-position the current file position so as not to inadvertently
overwrite existing data. We will look at the file reposition functions in the next section.

To open a binary stream, b can be appended either after the first character or at the end of
the string. The following are the possible binary access modes:

One-way modes: rb, wb, and ab
Two-way modes: r+b, w+b, a+b, rb+, wb+, and ab+

Note that some systems ignore the b specifier; in these cases, it is provided for backward
compatibility.

Working with Files Chapter 22

[497]

A stream can be manipulated with the following functions:

fopen(): Using an absolute or relative filename and mode, this creates/opens a
stream.
freopen(): This closes the given stream and re-opens it using the new filename.
fclose(): This closes a stream.
fflush(): For output or update streams, this flushes any content in the buffer to
the file/device.

Note: fflush() is only intended for the output stream buffer. It would be
handy to have a C standard library function to also clear the input stream
buffer. Some systems offer the non-standard fpurge() function, which
discards anything still in the stream buffer. Other systems allow non-
standard behavior for fflush() to also flush the input stream buffer.
Your system may offer yet another non-standard method to flush the
input buffer.

fopen() will fail if the user does not have permission to read or write the file. It will also
fail if a file opened for reading (only) does not exist.

It is a good idea to always close files before exiting the program.

It is also good practice to flush the buffers of output files before closing them. This will be
demonstrated in the example programs later in this chapter.

Understanding file operations for each type of
stream
Because there are two types of file streams, text streams, and binary streams, there are also
different sets of functions to manipulate them.

We have already seen most of the functions that are useful for text streams. They are as
follows:

fprintf(): Writes formatted text to the output stream
fscanf(): Reads and interprets formatted text from the input stream
fputs(): Writes an unformatted line to the output stream
fgets(): Reads an unformatted line from the input stream

Working with Files Chapter 22

[498]

There are also some single-character functions that we have come across:

fgetc(): Reads a single character from the input stream
fputc(): Writes a single character to the output stream
ungetc(): Puts a single character back into the input stream

These single-character functions are particularly handy when processing the input of one
character at a time. Numbers or words can be assembled into strings. If a whitespace or
delimiter character is encountered, it can either be processed or pushed back into the input
stream for additional processing.

There are a set of functions intended specifically for record- or block-oriented file
manipulations. These are as follows:

fread(): Reads a block of data of a specified size from a file
fwrite(): Writes a block of data of a specified size to a file
ftell() or fgetpos(): Gets the current file position
fseek() or fsetpos(): Moves the current file position to a specified position

In block-oriented file processing, whole records are read at once. These are typically read
into a structure. They may also be read into a buffer and then parsed for their individual
parts.

Finally, there are some common file stream functions, as follows:

rewind(): Moves the current position to the beginning of the file
remove(): Deletes a file
rename(): Renames a file

With these functions, we can create programs to manipulate files in any number of ways.

C doesn't impose a structure on the content of a file. That is left up to the program and the
type of data that is to be preserved in the file. These functions enable a wide variety of ways
to create, modify, and delete not only the content of files but also the files themselves.

Before we can put these functions into action, we need to introduce the filesystem and how
it fits in with the C standard library.

Working with Files Chapter 22

[499]

Introducing the filesystem essentials
A filesystem is a component of an operating system that controls how files are stored and
retrieved. The filesystem typically provides a naming and organization scheme to enable
the easy identification of a file. We can think of a file as a logical group of data stored as a
single unit. A filesystem provides the ability to manage an extremely large number of files
of a wide range of sizes, from very small to extremely large.

There are many different kinds of filesystems. Some are specific to a given operating system
while others offer a standard interface and appear identical across multiple operating
systems. Nonetheless, the underlying mechanisms of a filesystem are meant to guarantee
various degrees of speed, flexibility, security, size, and reliable storage.

The filesystem is meant to shield both the operating system and programs that run on it
from the underlying physical details of the associated storage medium. There is a wide
variety of mediums such as hard drives, SSDs, magnetic tapes, and optical discs. The
filesystem can provide access to local data storage devices—devices connected directly to
the computer—as well as remote storage devices—devices connected to another computer
accessible over a network connection.

Introducing the filesystem
We can think of the filesystem as the interface between the actual storage medium and our
program. Despite the underlying complexity and details of any filesystem, its interface is
quite simple. C provides a standard set of file manipulation functions that hide the
underlying complexities of any filesystem. These complexities are encapsulated in each
implementation of the C standard library. From the perspective of a C program, once we
can identify a file by name and, optionally, by its location, very little else is of concern to the
program.

So, the main aspects of filesystems that we need to care about are how files are named and
their location. As much as I would like to say that there is only one way to name and locate
files, I cannot say that. Not all filesystems have the same file organization or naming
schemes. We will examine filenames briefly.

Each file has two aspects to its name—its location or file path and its filename.

Working with Files Chapter 22

[500]

Understanding a file path
A file path can be either an absolute file path or a relative file path. In an absolute file path,
the base of the file hierarchy is specified, along with the name of each directory and
subdirectory to the final directory where the filename exists. The base of the file hierarchy is
also called the root of the file hierarchy tree. In a relative file path, only the portions of the
path relative to the current program location are required.

The structure of an absolute file path varies from one filesystem to another. It may have a
generic root or it may begin with the name of the device where the file hierarchy exists. For
instance, on Unix and Linux systems, all files exist somewhere in the file hierarchy with the
root beginning with /. On Windows, the root of a file hierarchy typically begins with a
device identifier, such as D:.

Thankfully, there are many common features that we can rely upon. Once the base of the
file hierarchy, or the root, is identified, various parts of the way the location of the file is
specified are common.

Not all files live at the root. There can be many directories at the root, and each directory
itself may have numerous sub-directories. Traversing this hierarchy to the desired file is
called the path. Each layer in the hierarchy can be separated by a forward slash (/) in C,
even though this may not be the case in the native filesystem. Also, the current working
directory, regardless of its path, is identified by a dot (.). Furthermore, if the current
directory has a dot (.), then the parent of this directory—or whatever the layer is when we
go up one level in the hierarchy—can be specified by two dots (..).

Default path attributes apply if none are given. For instance, if there is no path, the current
directory location is the default path.

In our example programs, we will assume that the data files are in the same directory as the
executable program. This is a simplified assumption. Very often, paths to data files are
stored in a file with the .init or .config extension, which is read and processed when
the program starts.

Understanding a filename
A filename identifies a unique file within a directory. Each filename is typically unique
within a directory. We think of this directory as the location where the file exists. A
directory name is part of the file path.

Working with Files Chapter 22

[501]

A filename can take many forms, depending on the filesystem. In Windows, Unix, and
Linux filesystems, a filename consists of one or more alphabetic characters with an optional
extension. A file extension consists of one or more characters with a separating dot (.)
between it and the name. The combination of the name and extension must be unique
within a directory. We have already seen this with our source files that have a .c extension,
our header files that have a .h extension, and our executable files, which, by convention,
have no extension.

With these concepts in mind, we are now ready to begin manipulating files in C.

Opening files for reading and writing
We can now create a program to open a file for reading and another file for writing. This is
where our file I/O exploration will begin and will continue through the remaining chapters
of this book. The following program is our starting point:

#include <stdio.h>
#include <stdlib.h> // for exit()
#include <string.h> // for strerror()
#include <sys/errno.h> // for errno

int main(void) {
 FILE* inputFile;
 FILE* outputFile;
 char inputFilename[] = "./input.data";
 char outputFilename[] = "./output.data";
 inputFile = fopen(inputFilename , "r");
 if(NULL == inputFile) {
 fprintf(stderr, "input file: %s: %s\n",
 inputFilename , strerror(errno));
 exit(1);
 }

 outputFile = fopen(outputFilename , "w");
 if(NULL == outputFile) {
 fprintf(stderr, "input file: %s: %s\n",
 outputFilename , strerror(errno));
 exit(1);
 }
 fprintf(stderr,"\"%s\" opened for reading.\n",inputFilename);
 fprintf(stderr,"\"%s\" opened for writing.\n",outputFilename);
 fprintf(stderr,"Do work here.\n");

 fprintf(stderr , "Closing files.\n");

Working with Files Chapter 22

[502]

 fclose(inputFile);
 fflush(outputFile);
 fclose(outputFile);
}

In this program, we are not only introducing minimal file operations, but we are also
introducing a very basic system-error reporting mechanism. With this mechanism, we do
not need to reinvent the error message; we let the system report its own error message. To
do that, we need to include string.h and sys/errno.h. If we can't open our files for any
reason, we need to exit, so we also need to include stdlib.h.

We are not (yet) using any inputs from the command line, so the parameters to main() are
ignored by setting them to void. We then declare input and an output file descriptor for
each file we will open.

The next two lines set the file path ("./") and filenames ("input.data" and
"output.data") for the files we will soon try to open. For now, we will hardcode these
names. In later versions of this program, we'll get a bit more practical with the user input of
filenames.

Now, we are ready for the real work of this program. First, we call fopen() to open
inputFilename for reading; if this succeeds, the file descriptor is set. If the file descriptor
is NULL, we print an error message to stderr and exit. Note that we are using fprintf()
with stderr to provide feedback to the user. This is good practice, one that we will
continue for the remainder of this book.

If a C standard library function fails, it typically sets the value of a system-global variable
named errno. In this case, when fopen() fails, the fprintf() function uses
the strerror(errno) function to convert errno into a human-readable string. These are
defined in the <sys/errno.h> file. It is worthwhile to find that file on your system, open
it, and peruse the errors defined there. However, don't try to understand everything you
see there all at once. So, what we are showing here is a very handy way to display known
system errors to the user. This is an extremely useful programming pattern to incorporate
into your own programs.

If the first fopen() group succeeds, we move on to the next fopen() group. This is similar
to the first group, except we are opening a file for writing. This will usually succeed, but we
need to also be able to handle a situation where it might not.

The next three fprintf() statements provide the simple status of the program. These are
not really necessary because most often, we can assume the success of system function calls
and only need to check and report when they fail.

Working with Files Chapter 22

[503]

Finally, the program closes the input file, flushes the output file (even though we haven't
done anything yet), and closes the output file.

Create a file named open_close_string.c. Type in the preceding program, save it,
compile it, and run it. You should see the following output:

Oh, darn! Our input file needs to exist before we can open it. Alright—in your console
window, you can create an empty file with the touch input.data Unix command, or
with your editor, create a file named input.data in the same directory as
open_close_string.c and save it (it doesn't have to have anything in it, it just has to
exist). Run the program again and you should see the following:

Terrific! We now have a very basic file I/O program that we can use when input and output
files are known and fixed.

Before we finish this chapter, we'll present two simple ways to get filenames from the user.
The first will be via inputs from within the program and the second will be by using the
rather limited argv arguments via the command line.

Getting filenames from within the program
Copy open_close_string.c into open_close_fgetstr.c and open the following
program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/errno.h> // for errno

int main(void) {
 FILE* inputFile;
 FILE* outputFile;

Working with Files Chapter 22

[504]

 char inputFilename[80] = {0};
 char outputFilename[80] = {0};

 fprintf(stdout , "Enter name of input file: ");
 fscanf(stdin , "%80s" , inputFilename);
 inputFile = fopen(inputFilename , "r");
 if(NULL == inputFile) {
 fprintf(stderr, "input file: %s: %s\n", inputFilename ,
 strerror(errno));
 exit(1);
 }

 fprintf(stdout , "Enter name of output file: ");
 fscanf(stdin , "%80s" , outputFilename);
 outputFile = fopen(outputFilename , "w");
 if(NULL == outputFile) {
 fprintf(stderr, "input file: %s: %s\n",
 outputFilename , strerror(errno));
 exit(1);
 }

 fprintf(stdout,"\"%s\" opened for reading.\n",inputFilename);
 fprintf(stdout,"\"%s\" opened for writing.\n",outputFilename);
 fprintf(stderr , "Do work here.\n");
 fprintf(stderr , "Closing files.\n");
 fclose(inputFile);
 fflush(outputFile);
 fclose(outputFile);
}

Notice the lines that are in bold. Only these lines have changed from the preceding
program. For the input file and the output file, a string array of 80 characters is specified, an
input prompt for the filename is given, and the filename is read using sscanf(). Save,
compile, and run this program. If you enter input.data and output.data at the prompts,
you should see the following output:

This technique is handy to use when filenames never change. However, very often,
filenames will change, so we need a more flexible way to get filenames as input.

Working with Files Chapter 22

[505]

Getting filenames from the command line
Next, copy the program into open_close_argv.c and modify it to match the following
program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/errno.h> // for errno

void usage(char* cmd) {
 fprintf(stderr , "usage: %s inputFileName outputFileName\n" ,
 cmd);
 exit(0);
}

int main(int argc, char *argv[]) {
 FILE* inputFile = NULL;
 FILE* outputFile = NULL;
 if(argc != 3) usage(argv[0]);
 if(NULL == (inputFile = fopen(argv[1] , "r"))) {
 fprintf(stderr, "input file: %s: %s\n",
 argv[1], strerror(errno));
 exit(1);
 }
 if(NULL == (outputFile = fopen(argv[2] , "w"))) {
 fprintf(stderr, "output file: %s: %s\n",
 argv[2], strerror(errno));
 exit(1);
 }

 fprintf(stderr , "%s opened for reading.\n" , argv[1]);
 fprintf(stderr , "%s opened for writing.\n" , argv[2]);
 fprintf(stderr , "Do work here.\n");
 fprintf(stderr , "Closing files.\n");
 fclose(inputFile);
 fflush(outputFile);
 fclose(outputFile);
}

In this program, we added the usage() function. Next, we added argc and argv to
the main() parameters because here, we'll get input from the command line.

Before we start to open any files, we need to make sure we have three parameters—the
program name, the input filename, and the output filename. When opening each file, use
the appropriate argv[] string for each one. Note that once we have opened the filenames
given in argv[], we really don't need them again for the remainder of the program.

Working with Files Chapter 22

[506]

Edit, save, compile, and run this program. You should see the following output:

As you can see, the first time that open_close_argv is run, no command-line arguments
are given and the usage() function is called. The next time that open_close_argv is run,
only one argument is given and the usage() function is again called. Only when
open_close_argv is called with two arguments is usage() no longer called and we can
attempt to open the named files. Note that when opening a file for input, the file must exist
or an error will occur. However, if you open a file for writing or appending that does not
exist, a new file with that name will be created. In this case, input.data already exists, so
opening the file is successful.

We now have several ways to get filenames to open file descriptors. We'll see in the next
chapter how to expand these simple programs to create an unsorted name file and then use
them again to read that unsorted name file and write out a sorted name file.

Summary
In this chapter, we expanded our knowledge of streams to text and binary streams. We
learned about the various stream properties and briefly explored file functions that
manipulate text streams and binary streams. We also learned about some common file
functions, including fopen(), fflush(), and flclose(). These functions were
demonstrated in three different programs that obtained input and output filenames in
various ways. The first way hardcoded filenames into the program. The second way gave
the user a prompt for each file and read the filenames with scanf(). The last way received
filenames from command-line arguments via argv.

With the knowledge we have gained from covering these topics, we are ready to start with
the next chapter, where we'll begin working on these simple programs, enhancing the
command-line argument process and performing useful work on the input to generate
meaningful output.

23
Using File Input and File Output

In the previous chapter, we introduced many basic file concepts as well as most of the file
manipulation functions. We also demonstrated a simple way to open and close files.

In this chapter, we will put that knowledge to better use by developing a program to write
a sequential file and another program to read that file, sort it, and write it to a file. We will
find that there are several subtleties that we will need to address; we will also be using
nearly every C skill we have learned so far.

The following topics will be covered in this chapter:

Creating a template program to process filenames given on the command line
Creating a program to accept input from either stdin or a file and write output
to either stdout or a file
Creating a function to trim input from fgets()
Creating a program to accept input from either stdin or a file and write the
output in sorted order to stdout or a file

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Using File Input and File Output Chapter 23

[508]

File processing
Many books have been written about the myriad data file formats that are out there. These
include graphics file formats, audio file formats, video formats, and data file formats for
various database files and well-known application program files, such as Microsoft Word
and Microsoft Excel. Often custom file formats are closely guarded company secrets or, if
not secret, are only documented in the source code that manipulates them.

Along with data file formats, there are nearly as many file processing techniques—far too
many to be given even a cursory overview in a beginning C programming book. File
processing techniques are generally divided into sequential-access and random-access files
but this is an oversimplification. Within each of these categories, there can be many
variations of how they are internally organized and subsequently processed. Furthermore,
in some cases, complex computer programs may open more input and output files as they
run. Often, one or more configuration files are first opened, read, and processed to
determine how a program behaves. They are then closed and the program performs
processing on other files depending upon the settings in the configuration file(s).

Here, we present some useful ways to open two sequential files using enhanced command-
line arguments and then perform relatively simple processing on them.

Our goal in this chapter is to accept input from the console or a file, sort each line in a file,
and then write out the result, either to the console or to a file. We could just create the file in
a text editor and save the file; it will be more interesting to write our own program to do
that. We will first start with a program to accept inputs and write outputs based on the
presence or absence of the arguments given. This program will be built from a program we
created in Chapter 22, Working with Files, open_close_argv.c, and a program we created
in Chapter 19, Exploring Formatted Input, readString.c.

Creating a template program to process
filenames given on the command line
We begin creating our data file creation program by handling command-line arguments.

In the last chapter, we created a program that expected two filenames on the command line,
which were presented via argv; the input file was the first argument and the output file
was the second argument. What if we wanted to permit either argument to be omitted? We
could no longer rely on argument positioning; we need a way to further identify which
argument is input and which argument is output.

Using File Input and File Output Chapter 23

[509]

To do that, we will revisit the built-in command-line facility getopt(). This facility is older
and simpler than getopt_long(), which we demonstrated in Chapter 20, Getting Input
from the Command Line. We will specify two options, -i <input filename> and -o
<output filename>, neither of which will be required. getopt() does not have the
concept of required or optional arguments so we'll have to do that processing ourselves.

getopt() and getopt_long() are declared in the header file, unistd.h,
which is not a part of the C Standard Library. This means that if you are
running Unix, macOS, or Linux, this file and function will be available to
you. If you are running Windows, unistd.h is a part of the CygWin and
MinGW compiler tools. If you are using MFC, this file might be available to
you. A Windows version of getopt(), maintained by Microsoft, is
available on GitHub at https:/ ​/​github. ​com/ ​iotivity/ ​iotivity/ ​tree/
master/ ​resource/ ​c_ ​common/ ​windows; you will see the getopt.h and
getopt.c files.

Let's look at the following program:

Create a new file called getoptFiles.c. We will use this for both the data1.
creation and the data sorting program; we'll make copies of it and modify the
copies when needed later. Add the following header files:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h> // for getopt
#include <sys/errno.h> // for errno

We need stdio.h for the file I/O functions, stdlib.h for the exit()
function, string.h for the strerr() function, unistd.h for the getopt()
function, and sys/errno.h to convert any errno value into a human-readable
string.

Next, add the following usage() function:2.

void usage(char* cmd) {
 fprintf(stderr ,
 "usage: %s [-i inputFName] [-o outputFName]\n" , cmd);
 fprintf(stderr ,
 " If -i inputFName is not given, stdin is used.\n"
);
 fprintf(stderr ,
 " If -o outputFName is not given stdout is
used.\n\n");

https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows
https://github.com/iotivity/iotivity/tree/master/resource/c_common/windows

Using File Input and File Output Chapter 23

[510]

 exit(EXIT_FAILURE);
}

This function will be called when either wrong arguments are given to the
program or the user provides the -h command-line option. When we call this
function, something is not right or the user just wants help. Therefore, we never
return from this function; instead, we exit the program.

Next, add the following lines, which begin the main() function:3.

int main(int argc, char *argv[]) {
 int ch;
 FILE* inputFile = NULL;
 FILE* outputFile = NULL;

These statements declare variables we'll need in main(). Now, ch will be used by
getopt() as it processes command-line switches. File descriptors are then
declared for inputFile and outputFile.

We are now ready to perform command-line processing. Add the following4.
statements:

 while((ch = getopt(argc , argv , "i:o:h")) != -1) {
 switch (ch) {
 case 'i':
 if(NULL == (inputFile = fopen(optarg , "r"))) {
 fprintf(stderr, "input file \"%s\": %s\n",
 optarg, strerror(errno));
 exit(EXIT_FAILURE);
 }
 fprintf(stderr , "Using \"%s\" for input.\n" , optarg);
 break;
 case 'o':
 if(NULL == (outputFile = fopen(optarg , "a"))) {
 fprintf(stderr, "output file \"%s\": %s\n",
 optarg, strerror(errno));
 exit(EXIT_FAILURE);
 }
 fprintf(stderr , "Using \"%s\" for output.\n" , optarg);
 break;
 case '?':
 case 'h':
 default:
 usage(argv[0]);
 break;
 }
 }

Using File Input and File Output Chapter 23

[511]

In the conditional expression of the while()… loop, getopt() is called. The
result of getopt() is assigned to ch. If there are no more arguments, getopt()
returns -1 and we exit the loop normally. The arguments to getopt() are argc,
argv, and a string of valid option letters. The "i:o:h" string specifies that -i, -o,
and -h are valid character options. Note that i and o are followed by :, which
indicates that each must be followed by another parameter after that option. If an
option character is given that is not one of those specified, getopt() returns the
'?' character, which we handle in the loop.

The body of the while()… loop is the switch()… statement where each case
processes one of the options retrieved by getopt(). Both the case 'i': and
case 'o': statements try to open the given filename parameters; if fopen()
fails for either one, it returns NULL and sets errno, in which case we exit the
program after displaying the reason for failure. Otherwise, note that we open
outputFile for appending. This is so that we don't delete any data that may
already exist in the given outputFilename. If the value of ch is 'h' which the
user entered, or if it is '?' because getopt() found an invalid option, or our
switch()... statement encountered something it doesn't handle, usage() is
called. At this point, we have processed all of the command-line options. Before
we can do actual work, we have to see whether filenames were actually given.

The following statements finish the work of setting our inputFile and5.
outputFile descriptors:

 if(!inputFile) {
 inputFile = stdin;
 fprintf(stderr , "Using stdin for input.\n");
 usingInputFile = false;
 }
 if(!outputFile) {
 outputFile = stdout;
 fprintf(stderr , "Using stdout for output.\n");
 usingOutputFile = false;
 }

Using File Input and File Output Chapter 23

[512]

Why might inputFile or outputFile be NULL? Well, just because we told
getopt() what the valid options are, there is no facility to tell getopt() which
ones are required or optional. So, we may have processed the command line with
both options, either option, or no options at all. Here is where we handle that the
case where neither the input option nor the output option was given on the
command line. If inputFile is NULL, we set it to the stdin stream. Likewise, if
outputFile is NULL, we set it to the stdout stream. At the end of these
statements, both file descriptors will be either set to a file or set to one of the
console streams, stdin or stdout. We are now ready to do some work.

The following statements complete main() and our template program:6.

 fprintf(stderr , "Do work here.\n");

 fprintf(stderr , "Closing files.\n");
 fclose(inputFile);
 fflush(outputFile);
 fclose(outputFile);
}

There really is no work to do yet, so we just give a status statement. Then, we close
inputFile, flush the outputFile buffer, and finally close outputFile.

This is a complete program. It doesn't do any useful work; we'll add that in a bit. So, save
the file, compile it, and run it. We will exercise our program by giving it the -h option, just
an output file, just an input file, and then both. In the last case, we'll also give an input file
that does not exist. You should see the following output:

Using File Input and File Output Chapter 23

[513]

First, with only the -h option, we see the usage message. Next, we give an option that is not
valid to see how this looks. Then, we give just an output file; this file will be created. After
that, we give just an input file that does not exist; you can see the error message fetched
from errno.h. When we give an input file that does exist, all is well. Finally, we give both
a valid input file and a valid output file.

Notice that throughout this program, rather than using printf(…), we consistently
used fprintf(stderr , …). This is not merely a convention. By doing this, if needed,
we could redirect the stderr stream to a file and thereby save anything that would
otherwise go to the console.

One thing we have not considered is what happens when the user specifies the same file for
input and output. What should happen? This program is not designed to be used in that
manner nor does it perform any check to prevent the user from entering the same filename.
There is any number of things we could do: prevent the user from either entering the same
file or input and output or allowing the two files to be the same, for instance. In the former
case, we'd have to perform a name string comparison to see whether they are the same and
exit. In the latter case, we'd have to consider completely processing the input file before
opening and writing the output file to prevent mayhem from occurring.

We will use this program again later as a starting point for our other programs. Since we
have proven that this template program works, we can replace the fprintf(stderr ,
"Do work here.\n"); statement with program statements that do real work.

Creating a file of unsorted names
Now that we have getoptFiles.c, we can use it as a starting point for our next sequential
file program, createNames.c. This program will be used to create a file of names, one
name on a line, that will later become an input to the sortNames.c program.

In createNames.c, we will repeatedly read in a single name and write it out. We can test
the functionality of this program by using stdin and stdout as well as reading and
writing files.

Using File Input and File Output Chapter 23

[514]

However, before we can go further, we need to consider the issue of dirty input data. We
can assume that a name begins with alphanumeric characters and ends with alphanumeric
characters; we will assume that anything in between is part of the name, however odd it
may appear. What happens if the user enters whitespace either before or after the name? Or
if there is whitespace both before and after the name? Recall also that while gets() ends its
input scan with <newline> and does not preserve it in the input string, fgets() also ends
its input scan with <newline> but does preserve <newline>.

We will deal with these issues next.

Trimming the input string from fgets()
It would be extremely handy if the C Standard Library provided routines to trim
whitespace both before and after a string. As we have seen, some of the input routines
preserve whitespace, including <newline>, and some of the routines do not. Other
languages provide functions such as trimLeft(), trimRight(), and trim(), that trim
both the left and right sides of a string.

Thankfully, writing such a function is not too cumbersome in C. Consider the following
function:

int trimStr(char* pStr) {
 size_t first , last , lenIn , lenOut ;
 first = last = lenIn = lenOut = 0;
 lenIn = strlen(pString); //
 char tmpString[lenIn+1]; // Create working copy.
 strcpy(tmpStr , pString); //
 char* pTmp = tmpStr; // pTmp may change in Left Trim segment

 // Left Trim
 // Find 1st non-whitespace char; pStr will point to that.
 while(isspace(pTmp[first]))
 first++;
 pTmp += first;
 lenOut = strlen(pTmp); // Get new length after Left Trim.
 if(lenOut) { // Check for empty string.
 // e.g. " " trimmed to nothing.
 // Right Trim
 // Find 1st non-whitespace char & set NUL character there.
 last = lenOut-1; // off-by-1 adjustment.
 while(isspace(pTmp[last]))
 last--;
 pTmp[last+1] = '\0'; // Terminate trimmed string.
 }

Using File Input and File Output Chapter 23

[515]

 lenOut = strlen(pTmp); // Length of trimmed string.
 if(lenIn != lenOut) // Did we change anything?
 strcpy(pString , pTmp); // Yes, copy trimmed string back.
 return lenOut;
}

The trimStr() function takes a pointer to a string and makes a working copy of the
string. Because the first character of the string could change, the function uses a pointer to
the working copy. This pointer is set to the first character of the working string; it may be
the same pointer as that passed in, but we can never be certain of that. In every case, the
resulting string will be either, at most, the same number of characters or fewer characters;
therefore, we don't have to worry about the new string running beyond the existing string
array boundaries.

It first trims whitespace to the left, or beginning, of the working string, then trims
whitespace to the right, or end, of the working string. When trimming from the left, there is
the while()… loop to find the first non-whitespace. When that is found, the pointer to the
beginning of the string is adjusted.

Before continuing to trim from the right, a check is done to ensure the string is not empty; it
could have been a string of only whitespace, which will not be empty.

When trimming from the right, there is another while()… loop that begins at the highest
character index and walks back toward the front of the string until it finds a non-
whitespace character. When it finds one, it sets the character after it to NUL, terminating
character.

It should be noted that this function alters the original string when it resets the string
terminator. This is a side effect but is the intended effect of the function.

This is a handy function to use whenever you read input from the console or a file. We will
use it whenever we get input using fgets().

With this trimStr() function now available, we can proceed to the tasks of the program.

Reading names and writing names
To begin developing the createUnsorted.c program, first copy the getoptFiles.c
file to the createUnsorted.c file. We will henceforth modify this file.

Using File Input and File Output Chapter 23

[516]

Open createUnsorted and, after the const int stringMax declaration, add the
following function prototypes:

void usage(char* cmd);
int getName(FILE* inFileDesc , char* pStr);
void putName(char* nameStr , FILE* outFileDesc);
int trimStr(char* pString);

In this chapter, for each program, we will follow the following general program
organization:

#include files
Constant declarations
struct and enum declarations
Function prototypes
main()

Function definitions (these generally appear after main() in the same order as
their prototype declarations)

This is merely a convention. In the next chapter, we will learn about a multi-file program
organization that will help to naturally organize program structure.

So, after adding the preceding function prototypes, move the usage() function definition
below the main() function in the file. Every other function we add will be below this
function in the createUnsorted.c single file.

In the main() function, find the following statement:

 fprintf(stderr , "Do work here.\n");

Replace it with the following statements:

 char nameBuffer[stringMax];
 while(getName(inputFile , nameBuffer)) {
 putName(nameBuffer , outputFile);
 }

The work of this program is essentially contained in the deceptively simple-
looking while()… loop. First, an array of 80 characters is declared. This is the buffer into
which each new line of input will be read with fgets(), which we'll see in
the getName() function. Then, a pointer variable is declared and points to the first
character of the name buffer. Because trimStr() copies the newly trimmed string back to
the original string, the beginning of the string does not change. Therefore, we can simply
use the nameBuffer name without requiring an additional pointer variable.

Using File Input and File Output Chapter 23

[517]

When getName() returns 0, an empty string was entered and signals input has completed.
Otherwise, getName() returns the length of a trimmed string that we need to do something
with; in this case, we call the putName() function.

The first to two pieces of work that happen in this loop is the getName() function. We can
think of getName() as kind of the fgets() function we wish we had all along.

After the usage() function definition, add the getName() function at the end of the
program:

int getName(FILE* inFileDesc , char* pStr) {
 static int numNames = 0;
 int len;

 memset(pStr , 0 , stringMax);
 if(stdin == inFileDesc)
 fprintf(stdout , "Name %d: ", numNames+1);

 fgets(pStr , stringMax , inFileDesc);

 len = trimStr(pStr);
 if(len) numNames++;
 return len;
}

The function takes a file descriptor as its first function parameter and a pointer to the string
to be trimmed as its second function parameter.

We use the numNames static variable when input is coming from the console. It appears in
the user prompt as a means to inform the user how many names have been entered. Next,
we declare len, which will be used to determine whether we have an empty string after the
buffer is trimmed.

First, memset() is called to initialize each character in nameBuffer—here, referenced in
the function body as pStr—to '\0'. Then, if we are getting input from stdin, give the
user a prompt for input. A prompt is unnecessary when we are reading from files. fgets()
scans in the input stream for up to 79 (80-1) characters of input. At this point, there is
<newline> in the buffer, which means the length of the string in the buffer will never be
less than 1. We can't simply check for <newline> in the last position because 79 or more
characters may have been entered and we won't have <newline>; it will still be in the
input buffer. Rather than making assumptions that could later come back to bite us, we call
trimStr() on nameBuffer—here, referenced in the function body as pStr. Before exiting
the function, we get the new string length. If it is not 0, we increment numNames for the next
call to this function, and then len is returned to the caller.

Using File Input and File Output Chapter 23

[518]

Whenever we get a non-zero length result from getName(), the work that is currently done
is to output that name; this is accomplished with a call to putName(). Add the following
function at the end of createUnsorted.c:

void putName(char* pStr , FILE* outFileDesc) {
 fputs(pStr , outFileDesc);
 fputc('\n' , outFileDesc);
}

Again recall that puts() adds <newline> to whatever string it prints. This is not so with
fputs(). Just as we had to strip out <newline> with getName(), we have to put it back in
the output stream with putName(). This simple function first calls fputs() using the
functions input parameters and then calls fputc() to write the single character <newline>
to the given output stream.

We are not quite done. Now it is time to add the trimStr() function we encountered in
the preceding section to the end of the file. Once you have done that, save the file. Compile
it. To see this in action, we'll run it with these command-line arguments in the following
order:

createUnsorted1.
createUnsorted -o names.data2.
createUnsorted -onames.data3.
createUnsorted -i names.data4.

In the first case, stdin and stdout will be used and nothing will be saved. In the second
case, every name that is entered will be appended to names.data. In the third case, more
names will be appended to names.data. In the last case, names.data will be read and
printed to stdout so we can what's in the file. Run the program using three or more names
each time. Be sure to add whitespace before and/or after each name before hitting <enter>.
Your output should look something like the following:

Using File Input and File Output Chapter 23

[519]

As you can see, we entered the names Tom, Dick, and Jane, in the first case. The input
strings were sent immediately to the console. In the next case, we entered
 Tom (leading whitespace), Dick (trailing whitespace), and Jane (whitespace
before and afterward). Running the program again with the same options, we entered
Adam and Eve. In the last case, the file was input and it was written to the console, where
we can see that the trimming was accomplished and that Adam and Eve were appended
after the previous three names in the file.

We now have a moderately robust, yet simple, data entry program that trims input and
appends it to an existing data file. There are some subtleties we still haven't considered,
such as disk-full errors, end-of-file markers, and wide-character input. These are more
advanced topics for a later time; nonetheless, they should not be overlooked.

Now that we have a basic file input program, we can proceed to reading names from the
console or a file and sorting them to the console or a file.

Using File Input and File Output Chapter 23

[520]

Reading unsorted names and sorting them
for output
In Chapter 21, Exploring Formatted Input, we read names into an array, sorting them as they
were inserted. That works fine when the program can give feedback to the user such as
when the array is full, but what if, for file inputs, we have a very large number of names?
For that, we need a different data structure to read in all of the names to sort them.

Recall, in Chapter 18, Using Dynamic Memory Allocation, we created a linked list to contain
our deck of cards, which were then randomized and dealt out to four hands. A linked list is
one of many useful data structures used to dynamically store and sort large numbers of
data elements. We will create another, special-purpose linked list for our list of names and
add each name to the list in sorted order. This approach will be similar to what we did in
Chapter 21, Exploring Formatted Input, but instead of using a fixed-size array, we will use
an unbounded singly-linked list. Each list item will be a name. And because we will use the
list in a very specific manner, we do not have to create all of the functions that a general-
purpose linked list would require.

To begin the development of sortNames.c, copy the createUnsorted.c file to
sortNames.c. Henceforth, we will be modifying sortNames.c. We will continue using
the same general program structure with main() close to the top of the file and all other
functions beneath main().

Before we start making additions to implement our linked list, let's alter the while()…
loop in main() as follows:

 char nameBuffer[80];
 NameList nameList = {0};

 while(getName(inputFile , nameBuffer)) {
 AddName(&nameList , nameBuffer);
 }
 PrintNames(outputFile , nameList);
 DeleteNames(nameList);

Using File Input and File Output Chapter 23

[521]

We are declaring the NameList structure; this will be the starting point for the list elements
that hold information about the list. The only change to the while()… loop is to replace
putName() with the AddName() function where most of the work of sorting takes place in
dynamic memory. Once all of the names have been processed, we call PrintNames() to
write them out in sorted order. Finally, we call DeleteNames() to clean up all the dynamic
memory of the list we no longer need after the names have been printed. As before, we
explicitly close the files before exiting the program. Note that we have changed only four
statements in the part of our program that does the main work of the program.

One other thing to do in sortNames.c is to change the following:

if(NULL == (outputFile = fopen(optarg , "a"))) {

We change it to the following:

if(NULL == (outputFile = fopen(optarg , "w"))) {

We are changing the open mode from "a" append to "w" write so that each time we run
the program, the output file will be truncated to zero bytes rather than appending sorted
results to an existing file.

This program will not compile yet because we've not declared NameList nor
the AddName(), PrintNames(), and DeleteNames() functions. We may need a few other
functions specifically for list management.

Using a linked list to sort names
The sortNames() program is still relatively simple. However, we are beginning to build
segments of code that are very much unlike each other. For instance, the file handling code,
which includes getName(), putName(), and trimStr(), is unrelated to the linked list
handling code, which we will soon develop.

We could, as we have done many times before, dump all of this code in a single file,
happily compile it, and run it. Or, which is a much more common practice, separate
different code segments into separate files so that all of the functions in any given file have
a logical relationship. For the sortNames program, the logical relationships are that all of
the functions in one file manipulate one kind of structure, the linked list, and all of the
functions in another file manipulate file I/O. Among all of the source code files, there must
be one and only one main(). All of the files together make up a program. We will explore
this in much greater depth in the next chapter, Chapter 24, Working with Multi-File
Programs, but we will introduce this concept with the sortNames program here.

Using File Input and File Output Chapter 23

[522]

To this end, there is only more line to add to sortNames.c. With the other include files at
the top of the file, add the following line:

#include "nameList.h"

This statement will direct the compiler to find namelist.h and insert it into the program
input stream as if we had typed in the whole file in this location. We will next develop the
nameList.h header file. As we shall explore in the next chapter, header files should
contain nothing that allocates memory; these are primarily other #include statements,
typedef statements, struct declarations, enum declarations, and function prototypes.
Save sortNames.c and close it; we are done with it for a while.

In the file directory named sortNames.c, create a file named nameList.h and add the
following to it:

#ifndef _NAME_LIST_H_
#define _NAME_LIST_H_

#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <stdlib.h>

typedef char ListData;
typedef struct _Node ListNode;

typedef struct _Node {
 ListNode* pNext;
 ListData* pData;
} ListNode;

typedef struct {
 ListNode* pFirstNode;
 int nodeCount;
} NameList;

ListNode* CreateListNode(char* pNameToAdd);

void AddName(NameList* pNames , char* pNameToAdd);
void PrintNames(FILE* outputDesc , NameList* pNames);
void DeleteNames(NameList* pNames);
bool IsEmpty(NameList* pNames);
void OutOfStorage(void);
#endif

Using File Input and File Output Chapter 23

[523]

Notice that the whole header file is wrapped—it begins and ends—with the #ifndef …
#endif preprocessor directives. These instructions are a check to see whether the
_NAME_LIST_H_ symbol has not yet been encountered by the compiler. If so, define that
symbol and include all of the text until #endif. If the symbol has been defined, ignore
everything until #endif. This prevents multiple, possibly conflicting declarations in a
program requiring many, many headers.

This header file includes other header files that we know will be needed for nameList.c.
These headers may be included elsewhere; we include them here to be certain the header
files we need are present—they may not be needed anywhere else.

Next, there is typedef for the custom types, ListData, ListNode, ListNode, and
NameList. These are very similar to the linked list program in Chapter 19, Exploring
Formatted Output. Lastly, the function prototypes for list manipulation functions are
declared. Again, these are very similar to those we saw in Chapter 19, Exploring Formatted
Output. Notice that some of these functions were not used in sortNames.c. You may also
notice that Create<x>List was present in the program in Chapter 19, Exploring Formatted
Output, but is absent here. The NameList structure is allocated and initialized in main() of
sortNames.c so we don't really need it.

You may have also noticed that these declarations are very similar to what we have been
putting at the beginning of nearly all of our programs. In fact, most of those declarations
that we've been putting in our programs typically go in their own header file and are
included in the file where main() is found. Again, we will explore this in greater depth in
the next chapter.

We are now ready to begin defining the functions we have declared in nameList.h. Create
a new file, nameList.c. The very first line in this file should be the following:

#include "nameList.h"

Note that " and " are used instead of < and >. The " and " characters tell the preprocessor
to look in local directories for files instead of looking in predefined system locations for
Standard Library header files.

Using File Input and File Output Chapter 23

[524]

Next, add the following function to nameList.c:

ListNode* CreateListNode(char* pNameToAdd) {
 ListNode* pNewNode = (ListNode*)calloc(1 , sizeof(ListNode));
 if(pNewNode == NULL) OutOfStorage();
 pNewNode->pData = (char*)calloc(1, strlen(pNameToAdd)+1);
 if(pNewNode->pData == NULL) OutOfStorage();
 strcpy(pNewNode->pData , pNameToAdd);
 return pNewNode;
}

Recall from Chapter 19, Exploring Formatted Output, that calloc() is used to allocate
memory on the heap and return a pointer to it. calloc() is first called to
allocate ListNode and is called again to allocate memory for the incoming string. It then
copies the incoming string to the ListNode->pData element and returns a pointer to
ListNode. We will later have to free() each of these chunks of memory allocated with
calloc().

Next, add the following function to nameList.c:

void AddName(NameList* pNames , char* pNameToAdd) {
 ListNode* pNewName = CreateListNode(pNameToAdd);
 if(IsEmpty(pNames)) { // Empty list. Insert as 1st item.
 pNames->pFirstNode = pNewName;
 (pNames->nodeCount)++;
 return;
 }
 (pNames->nodeCount)++;
 ListNode* curr;
 ListNode* prev;
 curr = prev = pNames->pFirstNode;
 while(curr) {
 // Perform string comparison here.
 if(strcmp(pNewName->pData , curr->pData) < 0) {
 // Found insertion point before an existing name.
 if(curr == pNames->pFirstNode) { // New names comes before all.
 pNames->pFirstNode = pNewName; // Insert at front
 pNewName->pNext = curr;
 } else { // Insert somewhere in middle
 prev->pNext = pNewName;
 pNewName->pNext = curr;
 }
 return;
 }
 prev = curr; // Adjust pointers for next iteration.
 curr = prev->pNext;
 }

Using File Input and File Output Chapter 23

[525]

 prev->pNext = pNewName; // New name comes after all. Insert at end.
}

This is the workhorse function of nameList.c. It takes a NameList pointer and a string to
add to the list and first creates a new ListNode class with that string. If NameList is
empty, it adjusts the pointers and returns. Otherwise, it enters a while loop to find the
correct position among the existing ListNode structures to insert the new name. The
while()… loops must handle three possible locations—the beginning of the loop,
somewhere in the middle, and, if we get out of the loop, the end of the list.

You may want to review the insertion diagrams and routines from Chapter 19, Exploring
Formatted Output. Another very useful exercise is for you to create a drawing of a linked list
structure and walk through each path of the function, inserting a node in the beginning,
somewhere in the middle, and at the end.

Next, add the following function to nameList.c:

void PrintNames(FILE* outputDesc , NameList* pNames) {
 ListNode* curr = pNames->pFirstNode;
 while(curr) {
 fputs(curr->pData , outputDesc);
 fputc('\n' , outputDesc);
 curr = curr->pNext;
 }
}

This function starts at the beginning of the NameList structure and walks along with the
list, printing out each curr->pData element and <newline>. The curr pointer is adjusted
to the next element in the list.

To complement CreateListNode(), add the following function to nameList.c:

void DeleteNames(NameList* pNames) {
 while(pNames->pFirstNode) {
 ListNode* temp = pNames->pFirstNode;
 pNames->pFirstNode = pNames->pFirstNode->pNext;
 free(temp->pData);
 free(temp);
 }
}

In a similar fashion as PrintNames(), DeleteNames() starts at the beginning of the
NameList structure and walks along the list. At each ListNode, it removes the node, frees
the data element, and then frees the node itself. Note this is the reverse order of how
ListNode was created.

Using File Input and File Output Chapter 23

[526]

Add the following function to nameList.c:

bool IsEmpty(NameList* pNames) {
 return pNames->nodeCount==0;
}

This is a convenience function only used within functions defined in nameList.c. It simply
returns the current nodeCount with the NameList structure.

Finally, add the following function to nameList.c:

void OutOfStorage(void) {
 fprintf(stderr ,
 "### FATAL RUNTIME ERROR ### No Memory Available");
 exit(EXIT_FAILURE);
}

This function is called if the memory is full. Granted, with today's modern memory
management systems, this is unlikely. Nonetheless, it is prudent to not overlook this
function.

Save nameList.c. We now have sortNames.c, nameList.h, and nameList.c. We are
now ready to compile these three files into a single executable. To compile these programs,
enter the following command:

cc sortNames.c nameList.c -o sortNames -Wall -Werror -std=c11

In this command line, we are telling the compiler, cc, to compile two source code
programs—sortNames.c and nameList.c. The compiler will assume that to produce the
output executable file sortNames, it will need the intermediate compilation results of those
two source files; we don't have to name the intermediate files. Also, note that we do not
need to specify nameList.h; that directive is given in the #include statement so we don't
need it here.

Every other aspect of this command is the same as we've been using with all other
programs.

We are now ready to experiment with sortName.h.

Using File Input and File Output Chapter 23

[527]

Writing names in sorted order
The only thing left now is to verify our program. We will run the program with these
command-line arguments in the following order:

sortNames1.
sortNames -o sorted.data2.
sortNames -i names.data3.
sortNames -i names.data -o sorted data4.

In each test case, we will enter the names Tom, Dick, and Jane. The names.data file
should be left over from when we ran createUnsorted.c earlier and contain five names.
You should see the following output from the first case:

You should see the following output from the second test case:

Using File Input and File Output Chapter 23

[528]

The names.data file should still exist from our earlier test. Here, we use it as input and see
that we've sorted those five names, as follows:

In the last case, we sort names.data to a file and then print the file with the Unix
command cat, as follows:

In the first case, names were entered on the console, sorted, and output to the console. In
the second case, the same names were entered and written to a file. The file was displayed
with the Unix cat command. In the third case, the names.data input file was read, sorted,
and printed to the console. In the last case, the same input file was read, sorted, and written
to another file; it was displayed with the Unix command cat. In each case, inputs, sorting,
and outputs behaved as expected.

At this point, I hope it is clear how we've taken all of the concepts from earlier chapters to
create a robust, yet simple, name or word sorting program. There are many small nuances
of C Standard Library routines we have explored and compensated for by writing
additional C code.

Another aspect that I hope is profoundly clear is the importance of taking a simple starting
point, getting it to a working state, and then verifying the behavior of that code. Remember
that each C compiler on each operating system has subtle differences. Therefore, continual
testing and verification are programming habits that will serve you well throughout your
programming journey.

Using File Input and File Output Chapter 23

[529]

Summary
In this chapter, we once again demonstrated the importance of developing a complex
program in a stepwise manner from simpler yet operational programs. Here, we took the
program from Chapter 22, Working with Files, and built upon it to create a
template program, getoptFiles.c. We saw that getoptFiles.c can read from either
stdin or a file and can write to either stdout or another file. We then built upon
getoptFiles.c, which did little else than open streams, to read lines of text representing
names and output those lines as they were read. In the process of doing that, we learned
about the subtleties of the fgets() and fputs() functions and how to use them to our
advantage by wrapping each in a more capable function of our own.

Lastly, we took the concepts of sorted names from Chapter 22, Working with Files, and
applied them to files using dynamic memory structures to accommodate large and
unknown numbers of data elements in sortNames.c. There are many concepts that were
employed in sortNames.c, both large and small, from all previous chapters.

We also introduced the concept of multi-file C programs, which we will explore further in
Chapter 24, Working with Multi-File Programs. Most of the programs you write will consist
of three or more source code files and so it is imperative to understand those mechanisms.

5
Section 5: Building Blocks for

Larger Programs
Most C programs consist of more than one file. In this section, we'll learn how to create and
build programs with multiple files.

This section comprises the following chapters:

Chapter 24, Working with Multi-File Programs
Chapter 25, Understanding Scope

24
Working with Multi-File

Programs
In order to solve larger problems, we often need large programs. All of the programs we
have developed here have been small—under 1,000 lines of code. A reasonable size for a
medium-sized program to, say, create a simple game, perform a basic but robust utility, or
keep notes might consist of anywhere between 10,000 to 100,000 lines of code. A large
program would manage a company's inventory, track sales orders and bills of materials,
provide word processing or spreadsheet capabilities, or manage the resources of the
computer itself—an operating system. Such programs would consist of anywhere from
100,000 lines of code to a million or more lines of code. Such programs would have teams of
programmers and require hundreds of man-years of effort to create and maintain them.

As you gain experience in programming, you may find that the kinds of problems you
work to solve become larger. Along with that, you will find that the size of the programs
that solve those problems will commensurately become larger. These large programs are
not one single large file. Rather, they are a collection of many files, compiled into a single
program.

So far, we've used functions to organize operations. In this chapter, we will extend this idea
to group functions into one or more program source code files. A program can then be
made up of many source code files, each file having a logical grouping of functions. We
can then build programs with those multiple files.

There are many benefits to splitting large programs into multiple files. Specific areas/files
can be developed by different programmers or programmer teams. Maintenance of
individual files is easier because they have a logical connection within a file. But the biggest
benefit of using multiple files is reusability: the ability to use one or more source files in
many programs.

Working with Multi-File Programs Chapter 24

[532]

The following topics will be covered in this chapter:

Understanding how to group related functions into separate program files
Understanding how to use header files versus source files
Understanding that the preprocessor is powerful enough that we can easily hurt
ourselves and others with it
Building our multi-file program on the command line—make changes; rinse;
repeat

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Understanding multi-file programs
Before we get into the nitty-gritty of the differences between source files and header files,
we first need to understand why we need to have multiple source files at all.

In Chapter 23, Using File Input and File Output, we saw how some of the functions in that
program pertained only to opening and closing files, and some of the functions pertained
only to manipulating a linked list. We used the sortNames.c file to define the usage(),
getName(), putName(), trimStr(), and, of course, main() functions. Each of these
functions deals with some detail of input and output. Although you could argue that
trimStr() belongs more logically in a string-handling source code file, we use it here to
clean up the string from getName(), so here it stays. To sort the names, we used functions
declared in nameList.h and defined in nameList.c. These functions dealt only with the
linked list structure. Since these functions were called from the main() functions, we
needed their prototypes in that file; therefore, we put the structure and function
declarations in a header file and included that header in both source code files.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Working with Multi-File Programs Chapter 24

[533]

Imagine that we have several programs that might use a linked list to sort strings. If we
were careful to keep all of the structures and functions general enough for nameList, then
we could reuse these functions without needing to rewrite them. In each program that needs
to sort a linked list, we would need only to include the header file, nameList.h, and be
certain that the source code file, nameList.c, is compiled into the final program. This
serves three purposes, listed as follows:

Functions that perform similar functions are kept together in one file. This logical
grouping helps to provide order when there are hundreds, or even thousands, of
functions. Related functions will be found close together, making a large,
complex program more easily understood. We have already seen something like
this when we have included multiple header files. For instance, all input/output
(I/O) function prototypes can be seen in stdio.h, and nearly all string-handling
functions are found in string.h.
Any changes to those functions or structures in one file are limited primarily to
just that file and not every program that uses those functions.
By grouping related functions together, we can create subsystems of functions and
use them to build up more complex programs with one or more subsystems.

After we explore some of the details of source files versus header files and the preprocessor,
we will revisit the carddeck.c program, the final version from Chapter 16, Creating and
Using More Complex Structures. That program is a single source file; we will break it up. By
the time we get to do that, you should clearly understand why breaking it up is
appropriate.

Using header files for declarations and
source files for definitions
The two types of files we will use to group functions are header files and source code
files—or, more simply, just source files. Nearly all of the programs we have created thus far
have been single-file source files that have included struct and enum definitions,
typedef keywords, function prototypes, and functions. This is not typical in C
programming; we have only been doing it to keep our programs rather more condensed. It
is far more typical for C programs to consist of a main source file—where the
main() function is defined—and one or more header files and auxiliary source files.
The sortNames().c, nameList.h, and nameList.c programs are very typical examples
of a common C program.

Working with Multi-File Programs Chapter 24

[534]

Whenever the preprocessor sees the #include directive, which must be followed by a
filename, it opens that file and reads it into the input stream for compilation at that
location, just as if we had typed in the contents of the file ourselves. The filename must be
surrounded either by < and > or by " and ". Each of these has a special meaning to the
preprocessor. The angle brackets tell the preprocessor to look in predefined locations that
are relative to the compiler for the given filename. The quotation marks tell the
preprocessor to look in the current directory for the filename.

Creating source files
As we have already seen in our single-file programs, we can put pretty much anything and
everything in a source file. We use source files primarily to define functions and we put all
the rest, or almost all of the rest, in a header file to be included in the source file.

A source file can be laid out in any number of ways. We can define all functions before they
are called and have the main() function at the very end, or we can use function prototypes
at the top of the program and place our function definitions in any order, with the main()
function typically appearing immediately after the function prototypes. However, there are
perfectly good reasons to keep some things in the source file only; we will explore these
reasons fully in Chapter 25, Understanding Scope.

Since we know what a source file with everything in it looks like, we will focus our
attention on which things properly go into a header file and which things do not go into
one.

Creating header files
Header files are used for the following reasons:

Header files remove the clutter of function prototypes and the declaration of
custom types from the source file. They are moved to a header file to be included
in the source file.
For functions that are called from a different source file, the inclusion of the
header file with those function prototypes provides access to those functions.
Simply including the header file then makes them available within that program.
For custom data types that are used in other source files, the inclusion of the
header file with those custom data-type declarations makes those custom types
known within the other source files.

Working with Multi-File Programs Chapter 24

[535]

Header files provide a means to organize all of the C Standard Library header
files, as well as our own header files, into a single header file. An example of this
would be a source file that includes, say, stdio.h, stdlib.h, and
string.h header files, while another source file includes, say, the stdio.h,
math.h, and unistd.h header files. Note that stdio.h is needed in both source
files but the other standard headers are only needed in one source file. We could
create a single header file—say, the commonheaders.h—that includes all of
those headers and itself, which is then included in each of the source files.
This is not always done in a program; however, when there are many source files
and a wide variety of standard library headers spread all over the source files, it
is a good way to centralize header-file inclusion and avoid accidentally omitting
a needed header.

There are some very simple rules to follow for the contents of header files. These are driven
by the fact that a given header file may be used in more than one file. Many programmers
create header files for their source files without really thinking about why. A simple
guideline on when to create a header file at all is shown here:

Only create a header file when it will be used in two or more files.

Or, to put it another way, see the following:

Everything in a .h file should be used in at least two.c files.

Recall that in the sortNames program, the nameList.h header file was included in both
sortNames.c and nameList.c. Often, the habit of creating a header file for each source
file is so commonplace that it is done without much thought. Creating such header files is
similar to using { and } for the if()… else… statement blocks, even when they aren't
needed; it does little harm and helps to organize your source files. I find that whenever I
create the .c file, I automatically create the .h file for it as well.

So, what goes in a header file? Here are some examples:

Function prototypes; in other words, anything that declares a function but does
not define it
Custom type definitions (enums and structs)
Preprocessor directives such as #define and #include
Anything that defines a type but does not allocate memory, such
as typedef declarations and structs defined by typedef and enums

Working with Multi-File Programs Chapter 24

[536]

Conversely, what does not go into a header file? There are two main categories, as follows:

Anything that allocates memory, such as variable declarations and constant
declarations
Function definitions

When a constant or variable is declared, memory is allocated. This occurs regardless of
whether the variable is an intrinsic type or a custom type. If a variable is declared in a
header file and that header file is included multiple times, the compiler will try to allocate
memory each time using the same name. This results in the compiler being unable to
determine which memory is being referenced by the variable identifier. This is called a
name clash. The compiler will generate at least one error when it encounters multiple
defined variables of the same identifier.

When a function is defined, the compiler remembers the address of that function, among
other things. When the function is called, it then jumps to that address to execute the
function. If a function is defined in a header file and that header file is included multiple
times, the function will have multiple addresses for the same function and the compiler will
be unable to determine which function should actually be used. This is also called a name
clash. The compiler will generate at least one error when it encounters a function defined
more than once.

We will later encounter a method using the preprocessor to avoid these name collisions.
However, the idea of keeping variable declarations and function definitions out of header
files is such a long-standing practice that to alter it is a very bad programming practice.
Other programmers expect header files not to have memory allocation or function
definitions. Once a header file exists, it is assumed that it can be included as many times as
needed. There is no good reason at any time to alter this deeply ingrained practice.

To be clear, as we have seen, anything that could go into a header file doesn't have to; it can
occur in the source file where it is used. Why we would put something in a header file or
not is a topic for Chapter 25, Understanding Scope. For now, we will use a single header file
for each C source file as a means to declutter the source file.

Revisiting the preprocessor
The preprocessor is a very powerful utility; therefore, it must be used with extremely great
care. We can't eliminate it completely since it is an essential part of developing multi-file
programs. In this section, we will explore how to use the preprocessor. Our goal is to find,
just as Goldilocks did, the just-right amount of preprocessing to employ—not too much and
not too little.

Working with Multi-File Programs Chapter 24

[537]

Understanding the limits and dangers of the
preprocessor
The preprocessor is a simple macro processor that processes the source text of a C program
before the program is read by the compiler. It is controlled via single-line preprocessor
directives and transforms the original source text by interpreting macros embedded in the
original source text to substitute, add, or remove text based on the given directives. The
resulting preprocessed source text must then be a valid C program.

The following table provides an overview of the basic preprocessor directives:

#include Insert text from another source file.
#define Add a preprocessor macro definition.
#undef Remove a preprocessor macro definition.
#ifdef Conditionally include some text if the macro is defined.
#ifndef Conditionally include some text if the macro is not defined.
#if Conditionally include some text based on the value of a conditional expression.

#else
Conditionally include some text when the value of #if, #ifdef, #ifndef, or #elif
failed.

#elif Equivalent to #else #if in a single directive.
#endif Terminate conditional text.
#error Produce a compile-time error with the designated message.
#pragma Specify implementation-dependent information to the compiler.

There are a small number of other directives that have specialized use and are not covered
here.

The main feature of the preprocessor is that it largely performs textual substitution. Herein
lies both its power and its danger. It does textual substitution, but it doesn't understand C
syntax or any syntax at all.

Knowing some dangers of the preprocessor
Because the preprocessor provides simple programming-like commands, it becomes very
tempting to use it as a programming language. However, because it is merely a simple
macro processor that does not understand syntax, the results of its output can be very
misleading, resulting in code that compiles but behaves unpredictably.

Working with Multi-File Programs Chapter 24

[538]

There are circumstances where using the preprocessor in complicated ways is warranted.
Those are, however, circumstances that require advanced programming techniques and
rigorous verification methods that are outside the scope of this book. It is for this reason
that I recommend keeping our use of the preprocessor both as simple and as useful as
possible.

Using the preprocessor effectively
The following are some guidelines for using and not using the preprocessor effectively:

If you can write a function in C, do that instead of using a preprocessor macro.
You may also want to consider the use of the inline C
declaration. inline provides a suggestion to the compiler to place the body of
the function wherever it is called as if a textual substitution were done. This has
the advantage of preserving all of the type checking, as well as eliminating the
overhead of a function call. inline becomes useful in very high-performance
programming situations.
Use the preprocessor as a last resort for performance. Eliminating statements or
function calls as a means of improving performance is known as central
processing unit (CPU) cycle trimming and is highly subject to even minor
variations in system configurations. Therefore, strive to pick the best, most
efficient algorithm before resorting to cycle trimming.

Don't ever assume performance will be improved; actual performance must be
measured before and after to determine any effects upon performance. Entire
volumes have been written about both, to measure and to improve performance.

Prefer const <type> <variable> = <value>; over #define <name>
<literal> . In the former case, type information is preserved, whereas in the
latter case, there is no type information, so we can never be certain if the macro
will be used properly.
Prefer enum { <constantValue> = <value>, ... } over #define <name>
<literal>. You might want to declare an array size, say, in a structure, but the
compiler won't allow you to use a const int value. Many consider C's array
definition a deficiency of the language, and many programmers use #define
largely for this reason. Rather than drag the preprocessor into it, you can declare
an identifier in an enum block and give it a constant value. We will see how this
works in the program at the end of this chapter.
Control the use of included headers with simple preprocessor directives.

Working with Multi-File Programs Chapter 24

[539]

The last item deserves further exploration. When a header file is included in a source file,
the entire contents are copied into the source file at compile time. If the header file is also
included in another header file, as often happens, it will again be included in the source file.
The way to prevent this is to use three preprocessor directives in the header file, as follows:

#ifndef _SOME_HEADER_FILE_H_
#define _SOME_HEADER_FILE_H_

// contents of header file
...
...
...

#endif

The first directive tests whether the _SOME_HEADER_FILE_H_ macro has already been
defined. If so, this means that this particular header file would have already been processed
at least once, and all of the text of the file is ignored until the last directive, #endif, which
should be the last line of the header file.

Actually, the first directive tests whether the _SOME_HEADER_FILE_H_ macro has not
already been defined. If it has not, the next directive defines it, and the rest of the header
file text is inserted into the source file. The next time this file is encountered by the
preprocessor, the macro will have been defined and this test will fail, excluding all text
until the #endif directive.

This method ensures that a header file will always only be included once. To use this
method effectively, the macro symbol for the header file should be unique. Typically, using
the filename with all caps and underscores in the manner shown is effective and guarantees
uniqueness.

Debugging with the preprocessor
So, we have seen two instances of using the preprocessor effectively: for #include files and
limiting redundant processing of #include files. The last simple and effective use for the
preprocessor is as a tool for debugging large and/or complex programs of multiple files.

Using the conditional directives, we can easily control what source code is inserted into the
source file or excluded from the source file. Consider the following directives:

...
#if TEST_CODE
 // code to be inserted and executed in final program

Working with Multi-File Programs Chapter 24

[540]

 fprintf(stderr, "This is a test. We got here.\n");
#endif
...

If the TEST_CODE macro is defined and has a nonzero value, the statements within the #if
and #endif directives will be included in the source file. For this code to be included, we
can define the macro in a couple of ways. First, it can be defined in the main source file with
the following code:

#define TEST_CODE 1

This statement defines the TEST_CODE macro to have a value of 1 (nonzero, which implies
TRUE). If we wanted to turn off the test code but keep the macros in place, we would
change the line in the preceding code snippet to the following:

#define TEST_CODE 0

This both defines TEST_CODE and gives it a value of 0 (zero, which implies FALSE), which
will prevent the test statements from being inserted into the source code.

An alternate way is to define the macro on the command line for compilation, as follows:

cc myProgram.c -o myProgram -Wall -Werror -std=c11 -D TEST_CODE=1

The -D option defines the TEST_CODE macro and gives it the value of 1. Note that
command-line macros are processed before directives in any file.

When I have needed to test a wide variety of features in a very complex program, I have
actually used a set of macros such as the following:

#if defined DEBUG
 #define DEBUG_LOG 1
 #define DEBUG_LOG_ALIGN 0
 #define DEBUG_LOG_SHADOW 0
 #define DEBUG_LOG_WINDOW 0
 #define DEBUG_LOG_KEEPONTOP 1
 #define DEBUG_LOG_TIME 1
#else
 #define DEBUG_LOG 0
 #define DEBUG_LOG_ALIGN 0
 #define DEBUG_LOG_SHADOW 0
 #define DEBUG_LOG_WINDOW 0
 #define DEBUG_LOG_KEEPONTOP 1
 #define DEBUG_LOG_TIME 0
#endif

Working with Multi-File Programs Chapter 24

[541]

This set of macro definitions existed alone in a header file. I could then turn on or off a
whole set of debugging macro symbols via the command line by simply adding -D DEBUG
to the command-line options. Sprinkled throughout this program, which consisted of over
10,000 lines of code in approximately 230 files, were #if defined DEBUG_LOG_xxx ...
#endif directives with a few lines of code to provide logging as the program was
executing. I've found this rudimentary method, sometimes called caveman debugging, to
be effective.

A similar mechanism can be used to insert one set of statements or another set of
statements into the source file. Consider the following directives:

...
#if defined TEST_PROGRAM
 // code used to test parts of program
 ...
#else
 // code used for the final version of the program (non-testing)
 ..
#endif

When the TEST_PROGRAM macro is defined, the statements up to #else are inserted into
the source file. When TEST_PROGRAM is not defined, the statements in the #else branch are
inserted into the source file.

This method is handy when you need to use a set of source files for testing and need
the main() function for testing but don't need it when the source is part of another set of
source files. On the other hand, care must be exercised to prevent test code behavior from
varying too widely from the final code. Therefore, this method is not applicable in all cases.

Any further discussion of debugging is beyond the scope of this book.

Sometimes, you may find that you want to explore several ways to do the same thing in C.
However, after your exploration, you have two or more methods but you only need a
single one. Rather than comment out the statements you don't want, you can put them all in
the #if 0 ... #endif block. The 0 value will always be false and the statements
between #if and #endif will be excluded at compile time from the source code file. Some
of the programs in the source code repository for this book will use this method to exclude
an alternate method, to perform a series of steps.

Working with Multi-File Programs Chapter 24

[542]

We now have four effective yet simple uses for the preprocessor, as follows:

To include header files
To limit redundant processing of header files
For caveman debugging
To exclude a set of statements with #if 0 ... #endif when we are
experimenting with our program

We are now ready to create a multi-file program from a single-file program.

Creating a multi-file program
We will take the final version of the carddeck.c single-file program from Chapter
16, Creating and Using More Complex Structures, and reorganize it into multiple header files
and source files. You may want to review the contents and organization of that file now
before we begin.

We are going to create four .c files, each with their own .h file; we will create eight files in
total. These files will be named as follows:

card.c and card.h to manipulate the Card structure
hand.c and hand.h to manipulate the Hand structure
deck.c and deck.h to manipulate the Deck structure
dealer.c and dealer.h to be the main program file; dealer.h when possible
will be included in each of the source files

First, create a separate folder where these eight new files will exist. You may copy
carddeck.c to this folder or you may choose to leave it in its original location. We want to
copy and paste pieces of the original source file into each of our eight new files. If possible,
with your editor, open carddeck.c in a separate window. It is from this window that you
will be copying sections of carddeck.c and pasting them into new files. This is the
approach we will be taking. An alternate approach, which we are not going to describe
here, would be to copy carddeck.c eight times to each of those files and then pare down
each of them to their new purposes.

In the end, this collection of programs will run as before and produce exactly the same
output as before. This will be proof of our successful transformation.

Working with Multi-File Programs Chapter 24

[543]

Extracting Card structures and functions
As we extract this file, we will be going through carddeck.c to find the relevant bits. Take
the following steps:

Create and open the card.h header file, and put in the following new lines:1.

#ifndef _CARD_H_
#define _CARD_H_

#endif

This is our starting point for this header file. We use the macro directives, as
explained earlier, to ensure that anything in this file is only preprocessed once.
The _CARD_H_ macro is used nowhere else in the program but in this single
header file. Everything else that we put in this file will be after #define
_CARD_H_ and before #endif.
Next, we would normally add the necessary header files. We will save this for
later when we finish the dealer.c and dealer.h files.

In carddeck.c, you now should see a number of const int definitions. The2.
only ones of these that pertain to the Card structure are kCardsInSuit,
kWildCard, and kNotWildCard. Rather than keep them as this type, we will use
the following enum declaration to define them:

enum {
 kNotWildCard = 0,
 kWildCard = 1,
 kCardsInSuit = 13
}

This is done to give these identifiers actual constant values. We will need this
when we declare a hand or deck structure and need to specify the array size with
a constant value. The const int type, while it can't change after initialization, is
a read-only variable, not a constant; enum values are constants.

Next, copy the typedef enum { … } Suit; declaration, the typedef enum3.
{… } Face; declaration, the typedef struct { … } Card; declaration,
and the three Card functions, InitializeCard(), PrintCard(), and
CardToString(), from carddeck.c to card.h. This header should now look as
follows:

#ifndef _CARD_H_
#define _CARD_H_

Working with Multi-File Programs Chapter 24

[544]

enum {
 kNotWildCard = 0,
 kWildCard = 1,
 kCardsInSuit = 13
};

typedef enum {
 club = 1, diamond, heart, spade
} Suit;

typedef enum {
 one = 1, two , three , four , five , six , seven ,
 eight , nine , ten , jack , queen , king , ace
} Face;

typedef struct {
 Suit suit;
 int suitValue;
 Face face;
 int faceValue;
 bool isWild;
} Card;

void InitializeCard(Card* pCard , Suit s , Face f , bool w);
void PrintCard(Card* pCard);
void CardToString(Card* pCard , char pCardStr[20]);

#endif

We have grouped all of the constant values (via enum), the Card structure
definition, and functions that operate on a Card in a single file. Save this file.

Typically, in card.c, you would include card.h and any other standard library
headers. But in this program, we are going to have a single header file that is
included in all source files. We will get to that when we finish dealer.h. The first
line in card.h should be #include "dealer.h".

To finish this extraction, open card.c and find the three functions,4.
InitalizeCard(), PrintCard(), and CardToString(), in carddeck.c and
copy them into card.c. Your card.c source file should look as follows:

#include "dealer.h"

void InitializeCard(Card* pCard, Suit s , Face f , bool w) {

 // function body here

Working with Multi-File Programs Chapter 24

[545]

 ...
}

void PrintCard(Card* pCard) {

 // function body here
 ...
}

void CardToString(Card* pCard , char pCardStr[20]) {

 // function body here
 ...
}

The card.c source file has a single #include file and three function definitions
that manipulate a card. We have omitted the statements in the function bodies of
these functions for brevity. Save this file. We are now ready to move on to the
Hand files.

Extracting Hand structures and functions
Just as we extracted the typedef, enum, and struct instances, along with the functions for
the Card structure, we will do the same for Hand structures, as follows:

Create and open the hand.h header file and put in the following new lines:1.

#ifndef _HAND_H_
#define _HAND_H_

#endif

This is our starting point for this header file. Looking again through carddeck.c,
we see that there are a couple of const int types related to Hand that we need to
add as enum instances, as follows:

enum {
 kCardsInHand = 5,
 kNumHands = 4
};

Working with Multi-File Programs Chapter 24

[546]

We can next add the typedef struct { … } Hand; declaration and the 42.
function definitions related to the Hand structure: InitializeHand(),
AddCardToHand(), PrintHand(), and PrintAllHands(). However, notice
that a parameter to one of these functions is a Card* parameter, therefore the
compiler will need to know about the Card structure when it encounters this
prototype. We will need to include the card.h header file. After making these
additions, hand.h should look as follows:

#ifndef _HANDH
#define _HANDH

#include "card.h"

enum {
 kCardsInHand = 5,
 kNumHands = 4
};

typedef struct {
 int cardsDealt;
 Card* hand[kCardsInHand];
} Hand;

void InitializeHand(Hand* pHand);
void AddCardToHand(Hand* pHand , Card* pCard);
void PrintHand(Hand* pHand , char* pLeadStr);
void PrintAllHands(Hand* hands[kNumHands]);

#endif

hand.h now has the constant values needed, the structure definition for Hand,3.
and the function prototypes to manipulate the Hand structure. Save hand.h.
Create and open hand.c. As with card.c, find the four function definitions in4.
carddeck.c and copy them into hand.c. Add the #include
"dealer.h" directive to hand.c. It should now appear as follows:

#include "dealer.h"

void InitializeHand(Hand* pHand) {
 // function body here
 ...
 }

void AddCardToHand(Hand* pHand , Card* pCard) {
 // function body here

Working with Multi-File Programs Chapter 24

[547]

 ...
}

void PrintHand(Hand* pHand , char* pLeadStr) {
 // function body here
 ...
}

void PrintAllHands(Hand* hands[kNumHands]) {
 // function body here
 ...
}

The hand.c source file has a single #include directive and four function definitions that
manipulate a card. We have omitted the statements in the function bodies of these functions
for brevity. Save this file. We are now ready to move on to the Deck files.

Extracting Deck structures and functions
Just as we extracted the typedef, enum, and struct instances, along with the functions for
the Card and Hand structures, we will do the same for Deck structures. Take the following
steps:

Create and open the deck.h header file and put in the following new lines:1.

#ifndef _DECK_H_
#define _DECK_H_

#endif

This is our starting point for this header file. Looking again through carddeck.c,
we see that there is one const int related to Hand that we need to add as
an enum, as follows:

enum {
 kCardsInDeck = 52
};

Working with Multi-File Programs Chapter 24

[548]

We can next add typedef struct { … } Deck; and the four function2.
definitions related to the
Deck structure—InitializeDeck(), ShuffleDeck(), DealCardFromDeck(),
and PrintDeck(). However, notice that the Deck structure contains
two Card arrays and one function returns a Card*, pointer to Card structure,
therefore the compiler will need to know about the Card structure when it
encounters this structure and the function prototype. We will need to include
the card.h header file. After making these additions, deck.h should look as
follows:

#ifndef _DECK_H_
#define _DECK_H_

#include "card.h"

enum {
 kCardsInDeck = 52
};

typedef struct {
 Card ordered[kCardsInDeck];
 Card* shuffled[kCardsInDeck];
 int numDealt;
 bool bIsShuffled;
} Deck;

void InitializeDeck(Deck* pDeck);
void ShuffleDeck(Deck* pDeck);
Card* DealCardFromDeck(Deck* pDeck);
void PrintDeck(Deck* pDeck);

#endif

deck.h now has the constant value needed, the structure definition for Deck,3.
and the function prototypes to manipulate the Deck structure. Save deck.h.
Create and open deck.c. As with card.c, find the four function definitions4.
in carddeck.c and copy them into deck.c. Add the #include
"dealer.h" directive to deck.c. It should now appear as follows:

#include "dealer.h"

void InitializeDeck(Deck* pDeck) {
 // function body here
 ...
 }

Working with Multi-File Programs Chapter 24

[549]

void ShuffleDeck(Deck* pDeck) {
 // function body here
 ...
}

Card* DealCardFromDeck(Deck* pDeck) {
 // function body here
 ...
}

void PrintDeck(Deck* pDeck) {
 // function body here
 ...
}

The deck.c source file has a single #include directive and four function definitions that
manipulate a deck. We have omitted the statements in the function bodies of these
functions for brevity. Save this file. We are now ready to finish the dealer files.

Finishing the dealer.c program
Having extracted Card, Hand, and Deck declarations and functions, we can now finish the
program. Take the following steps:

Create and open the dealer.h header file and add the following new lines:1.

#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

#include "card.h"
#include "hand.h"
#include "deck.h"

Looking again through carddeck.c, we see that all that is left to be transferred to
dealer.h are the standard library header files. We also created three header files
for each of the three .c source files; we add them to this header file. Recall that
we also included this header file in each of the three source files. Also, remember
that we added #ifndef … #endif exclusion directives around each of those
header files so that they will ever only be preprocessed once. This header file
contains all of the standard library headers any of the source files could need and
it contains the header files for each of the three source files. Save this file.

Working with Multi-File Programs Chapter 24

[550]

Create and open dealer.c. The only thing left to transfer to dealer.c is the2.
main() function. The dealer.c file should appear as follows:

#include "dealer.h"

int main(void) {
 Deck deck;
 Deck* pDeck = &deck;
 InitializeDeck(pDeck);
 PrintDeck(pDeck);
 ShuffleDeck(pDeck);
 PrintDeck(pDeck);
 Hand h1 , h2 , h3 , h4;
 Hand* hands[] = { &h1 , &h2 , &h3 , &h4 };
 for(int i = 0 ; i < kNumHands ; i++) {
 InitializeHand(hands[i]);
 }
 for(int i = 0 ; i < kCardsInHand ; i++) {
 for(int j = 0 ; j < kNumHands ; j++) {
 AddCardToHand(hands[j] , DealCardFromDeck(pDeck));
 }
 }
 PrintAllHands(hands);
 PrintDeck(pDeck);
 return 0;
}

The main() function controls all the work of this program. It declares a Deck structure and
calls the Deck functions to manipulate that deck. The #include file that provides the
declarations for this in deck.h is included here within dealer.h. Next,
four Hand structures are declared, and a Hand function is called to initialize the hands. The
#include file that provides the declarations for this in hand.h is included here within
dealer.h. Then, cards are dealt from the deck and placed into the hands. Within main(),
there is no direct reference to a Card. Therefore, card.h is not directly needed for
dealer.c. However, the structures and functions for Card are needed by both Hand and
Deck. The source files for Hand and Deck need to know about Card structures and
functions. These kinds of header file interdependencies are the primary reason they are all
put into a single header that is included in each source file.

Working with Multi-File Programs Chapter 24

[551]

An alternative approach would have been to include in each file only the header files that
are needed to compile that source file. In this approach, dealer.c would only need to
include deck.h and hand.h. In deck.c, included files would be deck.h, card.h,
stdio.h, stdlib.h, and time.h. In hand.c, included files would be hand.h, card.h,
and stdio.h. In card.c, included files would be card.h, string.h, and stdio.h. This
approach was not taken because using a single header file is both more reliable and more
flexible if/when these source files are used in a larger program.

We have eight files that make up our program now. Let's see how to build it.

Building a multi-file program
In all of our single-file programs, we used the following command line to build them:

cc <sourcefile>.c -o <sourcefile> -Wall -Werror -std=c11

In the two-file program of Chapter 23, Using File Input and File Output, we used the
following command line to build it:

cc <sourcefile_1>.c <sourcefile_2>.c -o <programname> ...

The compiler command line can take multiple source files and compile them into a single
executable. In this program, we have four source files, so in order to compile this program,
we need to put each source file on the command line, as follows:

cc card.c hand.c deck.c dealer.c -o dealer ...

The order of the list of source files does not matter. The compiler will use the results of the
compilation of each file and build them together into a single executable named dealer.

Working with Multi-File Programs Chapter 24

[552]

Compile the program with the preceding command. The program should compile without
errors. Run the program. You should see the following output:

Working with Multi-File Programs Chapter 24

[553]

Note that this output is exactly the same as that shown in Chapter 16, Creating and Using
More Complex Structures.

Once you get this program working, spend some time commenting out one or more header
files, and recompile to see what kind of errors you get. For instance, what happens when
you comment out #include deck.h? What happens when you comment out #include
hand.h? What happens when you comment out #include card.h? After each
experiment, make sure you undo your experiment and verify that you can again compile
the program. Once you have explored those experiments, you might also want to try the
alternative approach to including headers mentioned at the end of the preceding section,
Finishing the dealer.c program.

Summary
In this chapter, we took a single source file made up of many structures and functions that
operate on them and grouped them into four source code files and four header files. We
saw how we could—and should—group structures and functions that operate on them into
a source file and a corresponding header file. All of the functions were related, in that they
operated on the structures declared in that file's header file. These many source files were
then compiled into a single program. We could then build programs with those multiple
files. We also explored simple yet efficient ways to use the preprocessor without overusing
it. Lastly, we saw how to build a multi-file program by specifying each .c file on the
compiler command line.

This chapter is just an introduction to multi-file programs. In the next chapter, Chapter
25, Understanding Scope, we will expand our knowledge of multi-file programs so that we
can both limit which variables and functions can only be called from within a single file, as
well as expand the visibility of variables and functions.

25
Understanding Scope

In every program we have created thus far, functions have been available—which means
callable—from everywhere else within the program. Even in the multi-file program of
Chapter 24, Working with Multi-File Programs, every function in every file is
available/callable from within every other file. This is not always appropriate, nor is it
desirable. Likewise, some variables should only be accessed from within specific functions,
or for use within a specific group of functions.

There are many instances where it is appropriate to limit the availability of a function or the
accessibility of a variable. For instance, some functions may operate on a given structure
and should only ever be called by other functions that also operate on that structure; these
functions would never be called by any other functions. Similarly, we might want a value
to be accessible to all functions within a program or we might want to limit its access to just
a group of functions, or even a single function.

The visibility of functions and variables is known as scope. The scope of a variable or
function depends upon several factors with a program: its visibility, its extent, and its linkage.
In this chapter, we will explore the different kinds of scope as they apply to variables and
functions.

The following topics will be covered in this chapter:

Being able to define the three aspects of scope: visibility, extent, and linkage
Understanding the scope of variables declared within statement blocks
Understanding the scope of variables declared outside of statement blocks
Understanding special cases of a variable's scope
Demonstrating statement-block variables, function-block variables, and
file/global variables
Understanding compilation units
Understanding file scope
Understanding program scope

Understanding Scope Chapter 25

[555]

Technical requirements
As detailed in the Technical requirements section of Chapter 1, Running Hello, World!,
continue to use the tools you have chosen.

The source code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
Learn-​C-​Programming.

Defining scope – visibility, extent, and
linkage
Often, when the scope of a variable or function is mentioned, it is referring only to the
visibility of the variable or function. Visibility essentially determines which functions or
statements can see the variable to either access it or modify it. If the variable is visible, it can
be accessed and modified, except—as you may recall from Chapter 4, Using Variables and
Assignment—when it is declared as a const variable, it can only be accessed but cannot be
changed. As we will see, visibility is but one component of a variable's scope. The other
components of scope are extent (or the lifetime of the variable) and linkage (or in which file
the variable exists).

The visibility, extent, and linkage of variables and functions depend upon where they are
declared and how they are defined. However, regardless of how or where they are defined,
they must be defined before they can be accessed. This is true for both functions and
variables.

Scope applies to both variables as well as functions. However, the considerations for each
of them are slightly different. We will address the scope of variables first, and then expand
those concepts to the scope of functions.

https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming
https://github.com/PacktPublishing/Learn-C-Programming

Understanding Scope Chapter 25

[556]

Exploring visibility
The visibility of a variable is largely determined by its location within a source file. There
are a number of places a variable can appear, which determines its visibility. Some of these
we have already explored. The following is a comprehensive listing of types of visibility:

Block/local scope: This occurs in function blocks, conditional statement blocks,
loop statement-body blocks, and unnamed blocks. These are also called internal
variables. The visibility of variables declared in this scope is limited to the
boundaries of the block where they are declared.
Function parameter scope: Even though this scope occurs in function
parameters, the function parameters are actually within the block scope of the
function body.
File scope: These are also called external variables. A variable declared outside
any function parameter or block is visible to all other functions and blocks in that
file.
Global scope: When an external variable in one file is specially referenced in
other files to make it visible to them. This is also called program scope.
Static scope: When a variable has block scope with a function but whose extent,
or lifetime, differs from automatic variables.

We have primarily been relying upon block scope for all of our programs. In some cases,
we have had brief encounters with both global scope variables and static variables.

Note that internal variables exist within a block, whereas external variables exist in a source
file outside of any function blocks. The block of the internal variable may be a function
body, or, within a given function, it may be a loop body, a conditional expression block, or
an unnamed block. We will explore examples of these later in this chapter.

However, the scope of a variable involves more than just visibility.

Exploring extent
The scope is also determined by the lifetime, or extent, of the variable. We explored the
lifetime of variables and memory in Chapter 17, Understanding Memory Allocation and
Lifetime. We revisit this topic here since it relates to the other components of scope: visibility
and linkage.

Understanding Scope Chapter 25

[557]

The extent of a variable begins when a variable is created (memory is allocated for it) and
ends when the variable is deallocated or destroyed. Within that extent, a variable is
accessible and modifiable. Attempting to access or modify a variable outside of its extent
will either raise a compiler error or may lead to unpredictable program behavior.

Internal variables have a somewhat limited extent, which begins within a block when the
variable is declared and ends when the block ends. External variables are allocated when
the program loads and exist until the program ends.

A variable's extent is also specified by a storage class, or how it is allocated, used, and
subsequently deallocated. There are five classes of storage, as follows:

auto: This is the default storage class when no other storage class is specified.
When an auto variable is declared within a block, it has an internal variable
extent. When an auto variable is declared outside of a block, it has an external
variable extent.
register: This is equivalent to auto but it provides a suggestion to the compiler
to put the variable in one of the registers of the central processing unit (CPU).
This is often ignored by modern compilers.
extern: Specifies that the variable exists in another file; in that other file, the
variable must be an external variable. Therefore, its extent is the life of the
program.
static: A variable declared with this class has the visibility of the block scope
but the extent of an external variable—that is, the life of the program; whenever
that block is re-entered, the static variable retains the value it was last assigned.
static also has a special meaning for function declarations, which we will see
later in this chapter.
typedef: Formally, this is a storage class, but when used, a new data type is
declared and no storage is actually allocated. A typedef scope is similar to a
function scope, described later in this chapter.

Perhaps you can now see why memory allocation and deallocation are closely related to the
extent component of the scope.

We can now turn to the last component of scope: linkage.

Understanding Scope Chapter 25

[558]

Exploring linkage
In a single source file program, the concept of linkage doesn't really apply since everything
is contained within the single source file (even if it has its own header file). However, when
we employ multiple source files in a program, a variable's scope is also determined by
its linkage. Linkage involves declarations within a single source file—or compilation unit.

Understanding compilation units
A compilation unit is essentially a single source file and its header file. That source file may
be a complete program or it may be just one among several or many source files that make
up a final executable. Each source file is preprocessed and compiled individually in the
compilation phase. The result of this is an intermediate object file. An object file knows about
external functions and variables via header declarations but defers the resolution of their
actual addresses until later.

When all source files have been successfully compiled into object files, the link phase is
entered. In the link phase, the addresses of functions in other files or libraries are resolved
and the addresses of external global variables are resolved. When all unresolved addresses
have been successfully resolved (linked together), the object files are then combined into a
single executable.

In the dealer.c program, there were four source files. Each of those four files was an
individual compilation unit. At compile time, each of those source files was compiled into
four separate object files. Those four object files were then linked together and combined to
form a single executable.

Everything within a compilation unit is visible and accessible to everything else within that
compilation unit. The linkage of functions and variables is typically limited to just that
compilation unit. In order to cross linkage boundaries (source files), we must employ
header files with the proper storage classes for variables (extern) as well as
typedef declarations and function prototypes.

So, the linkage component of a scope involves not only the declarations within a single
source file but also makes those declarations available in another compilation unit.

Understanding Scope Chapter 25

[559]

Putting visibility, extent, and linkage all together
We now have an idea of the components involved in a scope. Within a single file, the
visibility and extent components are somewhat intertwined and take primary
consideration. With multiple files, the linkage component of a scope requires more
consideration.

We can think of scope starting from a very narrow range and expanding to the entire
program. Block and function scope has the narrowest range. External variables and
function prototypes have a wider scope, encompassing an entire file. The broadest scope
occurs with the declarations from within a single file and expanded across multiple files.

Some clarification is needed regarding global scope. Global scope means
that a function or variable is accessible in two or more source files. It is very
often confused with file scope, where a function or variable is only
accessible in the single file where it is declared. So, when a programmer
refers to a global variable, they often mean an external variable with file scope.

The preferred way to give a function or variable global scope is to (1)
define and initialize them in the originating source file with file scope, and
(2) to make them accessible in any other file via linkage by the use of
the extern declaration for that variable (extern is optional for
functions).

Older compilers would allow any external variables with file scope to be
accessible across all source files in a program, making them truly global
variables. Linkage scope was therefore assumed across all source files in
the program. This led to much misuse and name clashes of global
variables. Most modern compilers no longer make such an assumption;
linkage scope across file/compilation unit boundaries must now be
explicit with the use of extern. Such extern variable declarations are
easily done through the use of header files.

We can now focus on the specifics of the scope of variables.

Understanding Scope Chapter 25

[560]

Exploring variable scope
Having defined the components of a scope, we can explore what scope means for variables
in their various possible locations within a program: at the block level; at the function
parameter level; at the file level; and at the global- or program-level scope.

Understanding the block scope of variables
We have already seen several instances of block scope. Function bodies consist of a block
beginning with { and ending with }. Complex statements such as conditional statements
and looping statements also consist of one or more blocks beginning with { and ending
with }. Finally, it is possible to create an unnamed block anywhere with any other block
that begins with { and ends with }. C is very consistent in its treatment of blocks,
regardless of where they appear.

Variables declared within a block are created, accessed, and modified within that block.
They are deallocated and are no longer accessible when that block completes; the space
they occupied is gone, only to be reused by something else in the program.

When you declare and initialize variables within a function, those variables are visible to all
statements within that function until the function returns or the final } is encountered.
Upon completion of the block, the variable's memory is no longer accessible. Each time the
function is called, those variables are reallocated, reinitialized, accessed, and destroyed
upon function completion. Consider the following function:

void func1 (void) {
 // declare and initialize variables.
 int a = 2;
 float f = 10.5;
 double d = 0.0;

 // access those variables.
 d = a * f;

 return;
} // At this point, a, f, and d no longer exist.

The block within which a, f, and d exist is the function body. When the function body is
exited, those variables no longer exist; they have gone out of scope.

Understanding Scope Chapter 25

[561]

When you declare and initialize variables within a conditional statement block or the loop
statement block of one of C's loops, that variable is created and accessed only within that
block. The variable is destroyed and is no longer accessible once that block has been exited.
The for()… loop loop_initialization expression is considered to be a part of
the for()… loop statement_body; as such, the scope of any variable counter declared
there is valid only within the for()… loop statement_body. Consider the following
function:

#include<math.h>

void func2(void) {
 int aValue = 5
 for (int i = 0 ; i < 5 ; i++) {
 printf("%d ^ %d = %d" , aValue , i , exp(aValue , i);
 }
 // At this point, i no longer exists.
 return;
} // At this point, aValue no longer exists.

The aValue variable has scope through the function block, even in the block of the for()…
statement. However, the i variable is only visible within the loop block body of
the for()… statement. Not only is it exclusively visible with that block, but also, its extent
is limited to that block.

Consider the following nested for()… loop:

int arr[kMaxRows][kMaxColumns] = { ... };
...
for(int i=0 ; i<kMaxColumns ; i++) {
 printf("%d: " , i);
 for(int j=0 ; j<kMaxRows ; j++) {
 printf(" %d " , arr[j][i];
 }
 // j no longer exists
}
// i no longer exists

In the outer for()… loop, i is declared and has scope until the outer loop is exited. In the
inner for()… loop, j is declared and only has a scope with this loop body. Notice that
arr[][] is declared outside of both of these and has scope even in the innermost loop
body.

Understanding Scope Chapter 25

[562]

Consider the following hypothetical while()… loop:

bool done = false;
int totalYes = 0;

while(!done) {
 bool yesOrNo = ... ; // read yesOrNo value.

 if(yesOrNo==true) {
 int countTrue = 0;
 ... // do some things with countTrue
 totalYes += countTrue;
 done = false;
 } else {
 int countFalse = 0;
 ... // do some things with countFalse
 totalYes -= countFalse;
 done = false;
 }
}
printf("%d\n" , totalYes);

This code fragment does not do anything useful. We are using it, however, to demonstrate
the scope of each local variable.

In this code segment, done and totalYes are declared outside of the while loop and have
scope throughout these statements. Within the loop block, yesOrNo is declared and only
has scope within the loop. In the if()… else… statement, each branch has a local
variable declared that only has scope within that branch block. Once the if()…
else… statement is exited, regardless of which branch was taken, neither countTrue nor
countFalse exist; they have gone out of scope. When we finally exit the while()… loop,
only the done and totalYes variables remain; all of the other local variables have gone out
of scope.

Finally, it is possible to create an unnamed block, declare one or more variables within it,
perform one or more computations with it, and end the block. The result should be
assigned to a variable declared outside of that block, or else its results will be lost when the
block is deallocated. Such a practice is sometimes desirable for very complex calculations
with many parts.

Understanding Scope Chapter 25

[563]

The intermediate results do not need to be kept around and can be allocated, accessed, and
deallocated as computation progresses, as in the following function:

int func3(void) {
 int a = 0;
 {
 int b = 3;
 int c = 4;
 a = sqrt((b * b) + (c * c));
 printf("side %d, side %d gives hypotenuse %d\n" ,
 }
 return a;
}

In func3(), an unnamed block is created that declares b and c. Their scope is only within
this block; they are created when this block is entered and destroyed when it is exited.
Outside of this block, a is declared, whose scope is both the unnamed block and the
function block.

Understanding function parameter scope
Function parameter scope is the same as block scope. The block, in this case, is the function
body. Even though the parameters seem to appear outside of the body of the function, they
are actually declared and assigned inside the function body when the function is called.
Consider the following function:

double decimalSum(double d1 , double d2) {
 double d3;
 d3 = d1 + d2 ;
 return d3;
}

The d1 and d2 function parameters are part of the function body and therefore have the
block scope of the function. The d3 variable also has the block scope of the function. All of
these variables go out of scope when the function returns to its caller.

Understanding Scope Chapter 25

[564]

Understanding file scope
To declare a variable with file scope, we can declare it anywhere in a source file but outside
of any function body. Consider the following code segment from nameSorter.c (Chapter
21, Exploring Formatted Input):

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

const int listMax = 100;
const int stringMax = 80;

...

We have declared the listMax and stringMax variables as external variables outside of
any function block. Instead of using those literal values in that program, we used listMax
and stringMax whenever we needed those values. It has a scope that is visible throughout
this file.

Now, suppose this program was part of a multi-file program. The other source files would
not be able to use those variables; their scope is limited to just nameSorter.c. In the next
section, we will see how to make these variables accessible to other files.

Understanding global scope
To make external variables in one file available to another file, we need to declare them
with the extern storage class. Suppose nameSorter.c is part of a sortem.c program and
sortem.c needs to access those values. This would be done with the following declaration:

#include <...>
#include "nameSorter.h"

extern const int listMax;
extern const int stringMax;

...

Understanding Scope Chapter 25

[565]

Note that sortem.c uses the same type declarations found in nameSorter.c but adds the
extern keyword. The external variables are declared/allocated in nameSorter.c, and so
have file scope in that file and external variable extent. Their linkage scope has been
extended to sortem.c so that those variables are now visible throughout that source file.
Any other file part of the sortem.c program that might need to use listMax and
stringMax would simply need to add the same declaration as a part of its compilation
unit.

This can be done in several ways: one is to add the extern declarations to the .c file. Only
those files that have the extern declarations would be able to access those variables.

The other way is to put the extern declarations in a header file. To do this, we would
modify nameSorter.h, as follows:

#ifndef _NAME_SORTER_H_
#define _NAME_SORTER_H_

extern const int listMax;
extern const int stringMax;

...

#endif

In this manner, any source file that includes nameSorter.h also has access to the listMax
and stringMax external variables.

We can now explore the function scope.

Understanding function scope
The scoping rules for functions are considerably simpler than for variables. Function
declarations are very similar to external variable declarations. As we have variables that
must be declared before they can be accessed, functions must be declared or prototyped
before they can be called, and—like external variables—function declarations also have a
file scope. They can be called anywhere within a source file after they have been prototyped
or defined.

Understanding Scope Chapter 25

[566]

We have already seen how we can define functions in such a way that prototypes are not
needed. We simply define them before they are ever called. Most often, however, it is far
more convenient to simply declare function prototypes at the beginning of source files.
When this is done, functions can be called from anywhere within the file, and there is no
need to worry about whether a function has been declared before calling it.

To make functions extend beyond their compilation unit to have a global scope, their
prototypes must be included in the source file that calls them. We saw this in our very first
program, hello.c, where the printf() function was prototyped in the stdio.h header
file and called from within our main() function. In Chapter 24, Working with Multi-File
Programs, we saw how to include our own function prototypes in a header file and include
them in all of the source files.

These same rules apply to struct and enum declarations defined by typedef.

So, we can make functions global to all source files in a program. But can we make certain
functions only apply to a given source file? The answer is: certainly. We do this with
information hiding, through scope rules.

Understanding scope and information hiding
We have seen how to cross linkage boundaries with functions by including header files
with their prototypes. If we wanted to limit a function's scope to only its compilation unit,
we could do that in one of two ways.

The first way is to remove from the header file any function prototypes we do not want to
cross the linkage scope. In that way, any other source file that includes the header will not
have the excluded function prototype and will, therefore, be unable to call it. For example,
in the sortName.c file from Chapter 23, Using File Input and File Output, only
the AddName(), PrintNames(), and DeleteNames() functions were ever called from
within the main() function. The other functions in nameList.c did not need to be global.
Therefore, nameList.h only needs the following:

#include <stdbool.h>
#include <stdlib.h>

typedef char ListData;

typedef struct _Node ListNode;

typedef struct _Node {
 ListNode* pNext;
 ListData* pData;

Understanding Scope Chapter 25

[567]

} ListNode;

typedef struct {
 ListNode* pFirstNode;
 int nodeCount;
} NameList;

void AddName(NameList* pNames , char* pNameToAdd);
void DeleteNames(NameList* pNames);
void PrintNames(FILE* outputDesc , NameList* pNames)
#endif

We have removed a few function prototypes. We still need the typedef declarations
because they are needed for the compiler to make sense of the types found in the function-
prototype parameters.

We then need to add those function prototypes to namelist.c, as follows:

#include "nameList.h"

NameList* CreateNameList();
ListNode* CreateListNode(char* pNameToAdd);
bool IsEmpty();

void OutOfStorage(void);

NameList* CreateNameList(void) {
...

These four prototypes are now only within the scope of the nameList.c compilation unit.
If for any reason we needed to call any of these functions from outside of this source file,
we'd have to return them to the namelist.h header file.

There is, however, a more explicit way to exclude these functions from being called
globally.

Understanding Scope Chapter 25

[568]

Using the static specifier for functions
We saw earlier how the static storage class keyword was used for variables. When used
with function prototypes or function definitions, it takes on a different purpose. With
function prototypes, the static keyword indicates that the function will also be defined
later with the static specifier, as follows:

#include "nameList.h"

static NameList* CreateNameList();
static ListNode* CreateListNode(char* pNameToAdd);
static bool IsEmpty();

static void OutOfStorage(void);

NameList* CreateNameList(void) {
...

Each of these functions needs to be defined with the static keyword, which is now part of
its full prototype. The static keyword in the function definition means that the function
will not be exported to the linker. In other words, the static keyword in both the
prototype and definition prevents the function from ever being called globally from any
other file; it can only be called from within the file where it is defined. This is important and
useful if a program has many source files and some of the function names clash; those
functions that have the same name but operate on different structures can be limited to
those specific files where they are needed.

Let's demonstrate these concepts in a working program. We will create a set of
trigonometry functions in a file called trig.c, as follows:

 // === trig.h
double circle_circumference(double diameter);
double circle_area(double radius);
double circle_volume(double radius);
extern const double global_Pi;
 // ===

static double square(double d);
static double cube(double d);

const double global_Pi = 3.14159265358979323846;

double circle_circumference(double diameter) {
 double result = diameter * global_Pi;
 return result ;
}

Understanding Scope Chapter 25

[569]

double circle_area(double radius) {
 double result = global_Pi * square(radius);
 return result;
}
double circle_volume(double radius) {
 double result = 4.0/3.0*global_Pi*cube(radius);
 return result;
}
static double square(double d) {
 double result = d * d;
 return result;
}
static double cube(double d) {
 double result = d * d * d;
 return result;
}

We have not created a header file for this program to simplify this scope demonstration.
First, three function prototypes are declared; they will be defined later in this file. Next, we
declare the global_Pi constant as an extern; note that there is no assignment here. We
could have omitted it in this file because it is defined and initialized next; if we had created
a header file, it would have been necessary.

Next, we declare two static function prototypes, square() and cube(). Declared in this
manner, these functions can be called anywhere from within this source file but cannot be
called from anywhere outside of this source file.

Next, the global_Pi external variable (with scope currently in this file) is declared and
initialized. Note that here is where memory is allocated for global_Pi and that this
declaration is in the .c file, and would not be in a header file. We will soon see how to
make this truly global.

The remainder of this file is function definitions. Note that each function has a variable
named result but that variable only has a local scope for each function. Each time any one
of the functions is called, result is created, initialized, used to compute a value, and then
provides the return value to the caller. Note that global_Pi is available to each function
block. Lastly, note that square() and cube() are called by functions within this source file
but because they are static, any linkage to them from outside of this source file is not
possible.

Understanding Scope Chapter 25

[570]

Now, let's turn to the circle.c program, which is the main source file and needs to access
variables and functions in trig.h. This program is shown as follows:

#include <stdio.h>

 // === trig.h
double circle_circumference(double diameter);
double circle_area(double radius);
double circle_volume(double radius);

extern const double global_Pi;
 // ===

static const double unit_circle_radius = 1.0;

void circle(double radius);

int main(void) {
 circle(-1.0);
 circle(2.5);
}
void circle(double radius) {
 double r = 0.0;
 double d = 0.0;
 if(radius <= 0.0) r = unit_circle_radius;
 d = 2 * r;
 if(radius <= 0) printf("Unit circle:\n");
 else printf("Circle\n");
 printf(" radius = %10.4f inches\n" , r);
 printf(" circumference = %10.4f inches\n" , circle_circumference(d)
);
 printf(" area = %10.4f square inches\n" , circle_area(r));
 printf(" volume = %10.4f cubic inches\n" , circle_volume(r));
}

As in trig.c, the lines within // === trig.h and // === would have appeared in the
trig.h header file had we created it and applied #include to it. Let's pause here and
examine what these four lines are enabling. First, the function prototypes are providing
linkage scope so that they may be called from within this file; those function definitions
exist in a different source file, trig.c. Next, the extern ... global_Pi; statement now
makes access to this variable possible from within this source file. The
square() and cube() static functions are not visible to this source file.

Next, a unit-circle-radius static variable is declared. This variable can only be
accessed from within this source file.

Understanding Scope Chapter 25

[571]

Next, the prototype for circle() is declared; it will be defined after main().

In main(), circle() is only called twice. Within the circle() function, there are three
local variables: radius (function parameter scope), r, and d (both with local block scope).
These variables are only visible from within the block scope of the function. Note that
if radius is less than 0.0, the external constant with the unit_circle_radius file
scope is accessed.

In this example program, a global_pi constant variable was used as a global variable; this
is read-only. Had we needed to change the value of this global variable, we could have
done so by omitting the const keyword, and then given it new values from anywhere
within any source file that has linkage scope to them. Likewise,
the static unit_circle_radius external constant could be made a variable by removing
the const keyword. However, because it is declared static, it can only be accessed from
within circle.c, and so is not truly global.

Create and save trig.c and circle.c. Compile and run the program. You should see the
following output:

The output of this program is important only insofar as it proves the scoping rules of
functions and variables presented. In circle.c, try commenting out the
external global_Pi statement and see if the program compiles and runs as before. Also, in
circle.c, try calling square() or cube() and see if the program compiles. In trig.c, try
accessing the unit_circle_radius static constant.

Understanding Scope Chapter 25

[572]

Summary
In the previous chapter, we created a program where every structure and every function in
each source file was available to every other source file. Such accessibility is not always
desirable, especially in very large programs with many source files.

In this chapter, we learned about the three components of scope: visibility, extent, and
linkage. For variables, we applied those concepts to various levels of scope: block/local,
function parameters, file, and global scope. We then learned how these concepts applied to
the five storage classes: auto, register, extern, static, and typedef.

We saw how functions have simpler scoping rules than variables. We saw how header files
allow functions to be global across multiple files, wherever the header is included. We then
applied the static keyword to functions to limit their scope to just a single compilation
unit.

Epilog
Congratulations! You did it!

If you have read through to the end of this book, have been diligently typing in every
program, and have been performing the suggested experiments on those programs, you
will have achieved a solid foundation in the fundamentals of C programming. Make some
time to celebrate, even if only for a little bit or if only on your own.

Taking the next steps
Take some time to review each of the programs. You may want to pick out some that you
have found to be particularly useful for future reference. You may also want to revisit those
programs that you had some difficulty mastering.

You are now ready to take the next steps with developing both your C skills and your
programming skills. Everything you have learned in this book is applicable to most
programming languages and environments. Here are some suggestions about what might
be worthwhile next steps.

Understanding Scope Chapter 25

[573]

More advanced C topics
Even though C is often called a simple or concise programming language, it can take years
to fully master some of the more advanced features of C programming. Not every topic of
C has been covered in this book. The following is a list of those features, with some
explanation of each feature and why it was left out of this book:

Unions: An alternate form of a structure that can take more than one form,
depending upon how the union is used. Unions are particularly useful for
system-level functions. In my own experience, I have never needed to create a
union structure.
Recursion: A method where a function calls itself repeatedly until some stop
condition is met. There are some algorithms that are ideally solved with
recursion. To use recursion effectively, both thorough knowledge of those
algorithms and an understanding of the performance of the given system are
essential.
Function pointers: This feature was touched upon in the printing functions of
carddeck.c in Chapter 16, Creating and Using More Complex Structures. A
programmer could go a very long time without ever needing to use this feature.
The preprocessor: As has been pointed out in Chapter 24, Working with Multi-
File Programs, the preprocessor is both powerful and dangerous. To use it
effectively, a broader understanding of performance is essential, as well as a high
degree of debugging skill.
Random-access file processing: The examples we used for file processing have
been on sequential files only. C provides the mechanisms for random-access file
processing. However, because most of these problems are now solved with
databases that were not available 50 years ago, this type of file processing is
considered less important today.
Error handling: Each system has its own mechanisms for dealing with errors. We
touched upon the Unix errno facility in Chapter 22, Working with Files.
Whichever system you program for, be certain to understand and use its error-
handling and reporting mechanisms in your programs.
Multithreading: Various systems provide different ways to perform as if two or
more parts or threads of a program are operating at the same time. This feature is
both operating system-dependent and requires a thorough understanding of
operating system concepts.

Understanding Scope Chapter 25

[574]

Debugging: The debugging systems on each operating system are largely
specific to each system. Many of the debugging concepts are common across all
debuggers, but the details and capabilities vary widely from system to system. In
this book, we have introduced and illustrated probably the most basic debugging
technique that does not require a debugger: caveman debugging. To become
proficient in code-level debugging requires both an in-depth knowledge of
assembler language as well as a thorough understanding of operating system
concepts.

As you gain more skill and understanding of programming concepts and techniques, you
will be exposed at some level to each of these features. As you can see, some of them are
related to C but others are more related to the specific operating system on which your
programs will run.

More advanced programming topics
Programming and solving problems with computers often involve much more than just
being skilled at a programming language. Now that you have some programming
knowledge and skill with C, you should strive to broaden your programming knowledge in
the following areas:

Algorithms: Deal with how to approach solving many different kinds of
problems. A linked list is one such algorithm. You should strive to gain a general
understanding of a wide variety of algorithms and when to use each of them.
Application frameworks: Today's operating systems are complex computing
environments that offer a standard set of functionalities to every user. This
functionality is provided by the operating system vendors via application
frameworks. The application framework does the nitty-gritty work of these
features. To provide users a feature-rich yet consistent application, the
programmer must understand and use the specific application framework of a
given operating system.
A build system: A build system such as make or cmake, when set up properly,
automates the process of building and properly rebuilding programs that consist
of many source files. If/when you use an integrated development environment
(IDE) such as Visual Studio, Xcode, Eclipse, and so on, those applications will
have their own build systems integrated into them. Gaining more than a
rudimentary knowledge of build systems is essential for today's programmer.
Graphical user interfaces (GUIs): GUIs are a part of application frameworks on
most operating systems today, yet GUI programming requires an additional set
of knowledge and skills to program effectively.

Understanding Scope Chapter 25

[575]

Fundamental database programming: When C was invented, nearly all data was
stored in files. This is not true today, where a large percentage of data that is
created and consumed on computers is housed in some kind of database.
Modern database systems provide a rich set of functions with which programs
can query, retrieve, and store data in the database.
Networking: We now live in a completely interconnected world thanks to the
World Wide Web (WWW). Every operating system provides application
programming interfaces (APIs) to interact with the networking subsystems of
the host operating system. And, while web servers perform most of the low-level
functionality needed, application programs often need to interact with other
computers via the network interface.
Performance: Rudimentary performance concepts often go hand in hand with
understanding algorithms. However, there are many instances where a deeper
understanding of the performance of a particular program or system is required.
There are specialized concepts and techniques to understand a system's
performance, as well as improve various aspects of the program/system
performance.

Again, as you gain more skills and understanding of programming concepts and
techniques, you will be exposed at some level to each of these areas of computing. Some of
them are independent of any programming language. However, some are related to the
specific operating system on which your programs will run.

Picking a project for yourself
One of the most effective ways to deepen your knowledge and skills in any area of
endeavor is to pick a project for yourself and then complete that project. It could be a
simple project that takes dealer.c, for instance, and uses that to create a Blackjack game or
other card game. Or, you might want to create a simple to-do list program using your
knowledge of files and structures. It could also be an ambitious project that provides a
screen to enter data that will be stored in a database on a remote server.

Regardless of the project, not only will you gain greater knowledge but you will also have
learned how to acquire more knowledge to accomplish your project(s). And if you choose
to make programming your vocation, you will have working programs to demonstrate
your skills.

Understanding Scope Chapter 25

[576]

Resources
There are many books available for all levels of C programming skill. These can be found
on the Stack Overflow website at https:/ ​/​stackoverflow. ​com/ ​questions/ ​562303/ ​the-
definitive-​c-​book- ​guide- ​and- ​list.

A note about Stack Overflow: I have found that most of the answers to
questions available on the Stack Overflow website are often useful starting
points; very rarely have I ever gotten a complete or totally correct answer
from that site. It is useful, to be sure. Take what you find there and run the
programs in your environment. Modify the solutions to your situation.
But do not stop there. Most often, you will learn about something you had
never considered—when that happens, keep questioning and
experimenting for yourself.

On the other hand, I have also learned things from Stack Overflow that I'd
never even considered before. So, it can be a rich and useful resource if
approached carefully.

Another website worth exploring is comp.lang.c, Frequently Asked Questions (http:/ ​/ ​c-​faq.
com), where you will find common questions answered in generally useful ways.

As C has evolved, it is important to rely upon books that reflect that evolution; at a
minimum, books should be based on the C99 standard, although it is becoming more
common to see books that focus on C11 and even C18 standards.

It is also useful to join and participate in a local programming user group. Such groups
meet at regular intervals and are often focused on a single technology. Likewise, there are
many online chat and message boards focusing on a single technology. Beware, though, as
they can soon enough become time sinks.

https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
http://c-faq.com
http://c-faq.com
http://c-faq.com
http://c-faq.com
http://c-faq.com
http://c-faq.com
http://c-faq.com
http://c-faq.com

Appendix

C definition and keywords
The C specification has become quite large. You can read the full specification for each
version at http:/​/​www. ​iso- ​9899. ​info/ ​wiki/ ​The_ ​Standard.

C keywords
The following table provides a list of reserved keywords in C by category. These keywords
cannot be redefined in your programs. Some of these have not been explained in this book:

Types Storage Classes Flow of Control
char auto break

const extern case

double register continue

enum static default

float typedef do

int else

long for

short goto

signed if

sizeof C11 Keyword Additions return

struct _Alignas2 switch

union _Alignof2 while

unsigned _Atomic2

void _Generic2 Miscellaneous

_Bool1 _Noreturn2 inline1

_Complex1 _Static_assert2 restrict1

_Imaginary1 _Thread_local2 volatile

1 Added to the C99 standard.

http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard
http://www.iso-9899.info/wiki/The_Standard

Appendix

[578]

2 Added to the C11 standard. Many of these keywords facilitate quite advanced functions in
computer programming.

Table of operators and their precedence
The following table lists the precedence and associativity of C operators. Operators are
from listed top to bottom, in descending precedence. The grouping operator, (), has the
highest precedence. The sequence operator (,) has the lowest precedence. There are
five classes of operators: postfix, prefix, unary, and binary:

Operators Description Class Precedence Associativity

() Grouping N/A 17 N/A

a[k] Array subscripting Postfix 16 Left to right

f(…) Function call Postfix 16 Left to right

. Direct member access Postfix 16 Left to right

-> Indirect member access Postfix 16 Left to right

++ -- Increment and decrement Postfix 16 Left to right

(type) {init} Compound literal Postfix 16 Left to right

++ -- Increment and decrement Prefix 15 Right to left

sizeof Size Unary 15 Right to left

~ Bitwise NOT Unary 15 Right to left

! Logical NOT Unary 15 Right to left

- + Negative sign and positive sign Unary 15 Right to left

& Address of Unary 15 Right to left

* Indirection Unary 15 Right to left

Appendix

[579]

(type) Cast Unary 14 Right to left

* / % Multiplicative Binary 13 Left to right

+ - Additive Binary 12 Left to right

<< >> Left shift and right shift Binary 11 Left to right

< > <= >= Relational Binary 10 Left to right

== != Equality and inequality Binary 9 Left to right

& Bitwise AND Binary 8 Left to right

^ Bitwise XOR Binary 7 Left to right

| Bitwise OR Binary 6 Left to right

&& Logical AND Binary 5 Left to right

|| Logical OR Binary 4 Left to right

? : Conditional Ternary 3 Right to left

= += -= Assignment Binary 2 Right to left

*= /= %= Assignment Binary 2 Right to left

<<= >>= Assignment Binary 2 Right to left

&= ^= |= Assignment Binary 2 Right to left

, Sequence Binary 1 N/A

Appendix

[580]

Summary of useful GCC and Clang compiler
options
The following is a list of the compiler switches already encountered with the addition of
other useful switches and why you might want to use them:

Switch Description
-Wall Turns on warnings for a wide variety of possible errors.
-Werror Turns all warnings into errors.
-std=c11
-std=c18

Controls which C standard to use for compilation.

-D <symbol> Defines the <symbol> macro.
-U <symbol> Undefines <symbol>.
-o <file> Directs compiled executables to the named <file> name instead of a.out.
--help Displays the compiler help screen.
--version Displays the compiler version.

-O[n]
-Os

The optimization level, where for [n], 0 = none – 3 = aggressive.
s tells the compiler to optimize for size; most operating systems are optimized for size
only.

-g Generates debugging information to be read by the debugger program when the
program executes.

-H
Prints the name of each header file used. Each name is indented to show how deep in
the #include stack it is.

There is a dizzying array of options switches for the GCC compiler. These can be found at
the GNU website at https:/ ​/​gcc. ​gnu. ​org/ ​onlinedocs/ ​gcc/ ​Option- ​Summary. ​html.

ASCII character set
We have a table of 256 ASCII characters. The table is reproduced here for convenience; it
was generated from the program we created in Chapter 15, Working with Strings:

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

Appendix

[581]

The Better String Library (Bstrlib)
Here is the introduction to Bstrlib taken from its document file:

The bstring library is an attempt to provide improved string processing functionality to
the C and C++ language. At the heart of the bstring library (Bstrlib for short) is the
management of "bstring"s which are a significant improvement over '\0' terminated char
buffers.

Appendix

[582]

The full documentation can be found at https:/ ​/​raw. ​githubusercontent. ​com/ ​websnarf/
bstrlib/​master/​bstrlib. ​txt. The documentation is thorough in providing motivation
and seems to be complete in that it describes every function and their possible side effects,
if any. If you decide to incorporate this library into your programs, I strongly suggest you
read and study this document. In this brief introduction to Bstrlib, we will focus entirely on
the C functions of the library, not the C++ functions.

The Bstrlib home page can be found at http:/ ​/ ​bstring. ​sourceforge. ​net. The source can
be found at https:/ ​/​github. ​com/ ​websnarf/ ​bstrlib.

A quick introduction to Bstrlib
Bstrlib is a set of programs that is meant to completely replace the C standard library string
handling functions. It provides the following groups of functions:

Core C files (one source file and header)
Base Unicode support, if needed (two source files and headers)
Extra utility functions (one source file and header)
A unit/regression test for Bstrlib (one source file)
A set of dummy functions to abort the use of unsafe C string functions (one
source file and header)

To get the core functionality of Bstrlib, a program only needs to include one header file,
bstrlib.h, and one source file, bstrlib.c, for compilation, along with the other program
source files.

Unlike C strings, which are arrays of '\0'-terminated characters, bstring is a structure
defined as follows:

struct tagbstring {
 int mlen; // lower bound of memory allocated for data.
 int slen; // actual length of string
 unsigned char* data; // string
};

This structure is exposed so that its members can be accessed directly. It is far better to
manipulate this structure through functions because all of the functions perform memory
management so that we don't need to (apart from allocating and freeing bstring).

https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
https://raw.githubusercontent.com/websnarf/bstrlib/master/bstrlib.txt
http://bstring.sourceforge.net
http://bstring.sourceforge.net
http://bstring.sourceforge.net
http://bstring.sourceforge.net
http://bstring.sourceforge.net
http://bstring.sourceforge.net
http://bstring.sourceforge.net
http://bstring.sourceforge.net
http://bstring.sourceforge.net
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib
https://github.com/websnarf/bstrlib

Appendix

[583]

There are functions to create a bstring structure from a C string, allocate bstrings that
contain C strings and free them, copy and concatenate bstrings, compare and test the
equality of bstrings and C strings, search for and extract substrings within a bstring,
find and replace string functions, and create various bstring conversion functions. All of
these are described in the documentation, which is impressive. Bstrlib also provides
functions that return lists of strings and their own bstreams. There is quite a lot this library
offers, if you are willing to take the time to learn it.

OK, without repeating the documentation, let's take a look at some very simple examples.

A few simple examples
These examples are very, very simple and are meant to give you a feel for what
using Bstrlib is like. The examples provided on the SourceForge website are quite advanced
string handling examples. They are extremely useful and well worth studying.

Our first Bstrlib example will be the Hello, world! program, as follows:

#include <stdio.h>
#include "bstrlib.h"

int main(void) {
 bstring b = bfromcstr ("Hello, World!");
 puts((char*)b->data);
}

This program, bstr_hello.c, creates a bstring from a C string and then prints it using
puts(). To compile this program, be sure that the bstrlib.h and bstrlib.c files are in
the same directory as this program. Then, enter the following command:

cc bstrlib.c bstr_hello.c -o bstr_hello -Wall -Werror -std=c18

In our next example, we will split a string into multiple strings based on a delimiter and
then print them. We can do this with the C standard library, but it is rather complicated to
do (which is why we didn't even try it earlier). With Bstrlib, it's simple, as you can see in the
following program:

#include <stdio.h>
#include "bstrlib.h"

int main(void) {
 bstring b = bfromcstr("Hello, World and my Grandma, too!");
 puts((char*)b->data);

Appendix

[584]

 struct bstrList *blist = bsplit(b , ' ');
 printf("num %d\n" , blist->qty);
 for(int i=0 ; i<blist->qty ; i++) {
 printf("%d: %s\n" , i , bstr2cstr(blist->entry[i] , '_'));\
 }
}

This program, bstr_split.c, first creates a bstring from a C string and prints it out.
Then, it creates a bstrList variable by calling bsplit() with <space> as the delimiter in
a single line. The last three statements print each element of the list.

To compile this program, make sure the bstrlib.h and bstrlib.c files are in the same
directory as this program. Then, enter the following command:

cc bstrlib.c bstr_split.c -o bstr_split -Wall -Werror -std=c18

Recall how in Chapter 23, Using File Input and File Output, we needed to write a
trimStr() function to clean up input from fgets(). That function was approximately 30
lines of code. In our last example, we will compare this function to Bstrlib. We'll create a
test program that uses seven different test strings and then trim them once with our
function, renamed CTrimStr(), and a bstrlib version, named BTrimStr():

First, we'll set up main(), which repeatedly calls testTrim(), as follows:1.

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include "bstrlib.h"

int CTrimStr(char* pCStr);
int BTrimStr(bstring b);
void testTrim(int testNum , char* pString);

int main(void) {
 testTrim(1 , "Hello, World!\n");
 testTrim(2 , "Box of frogs \t \n");
 testTrim(3 , " \t Bag of hammers");
 testTrim(4 , "\t\t Sack of ferrets\t\t ");
 testTrim(5 , " \t\n\v\t\r ");
 testTrim(6 , "");
 testTrim(7 , "Goodbye, World!");
}

Appendix

[585]

This declares our testTrim() function prototypes, the test function, which
calls the trim functions and seven test cases, each consisting of a string with
various forms for the trimming that is required.

Next, we add our testTrim() function, which calls both CTrimStr() and2.
BTrimStr(), as follows:

void testTrim(int testNum , char* pInputString) {
 size_t len;
 char testString[strlen(pInputString) + 1];
 strcpy(testString , pInputString);
 fprintf(stderr , "%1d. original: \"%s\" [len:%d]\n" ,
 testNum, testString , (int)strlen(pInputString));

 strcpy(testString , pInputString);
 len = CTrimStr(testString);
 fprintf(stderr , " CTrimStr: \"%s\" [len:%d]\n" ,
 testString , (int)len) ;

 bstring b = bfromcstr(pInputString);
 len = BTrimStr(b);
 fprintf(stderr , " BTrimStr: \"%s\" [len:%d]\n\n" ,
 (char*)b->data , (int)len);
}

This function consists of three parts. The first part copies the input string to a
working string that the trim functions will manipulate, and then prints the
original test string. The second part resets testString, calls CTrimStr(), and
then prints the result. The third part creates a bstring from the input string, calls
BTrimStr(), and prints the result.

CTrimStr() is reproduced here for reference, as follows:3.

int CTrimStr(char* pCStr) {
 size_t first , last , lenIn , lenOut ;
 first = last = lenIn = lenOut = 0;
 lenIn = strlen(pCStr); //
 char tmpStr[lenIn+1]; // Create working copy.
 strcpy(tmpStr , pCStr); //
 char* pTmp = tmpStr; // pTmp may change in Left Trim
segment.
 // Left Trim
 // Find 1st non-whitespace char; pStr will point to that.
 while(isspace(pTmp[first]))
 first++;
 pTmp += first;

Appendix

[586]

 lenOut = strlen(pTmp); // Get new length after Left Trim.
 if(lenOut) { // Check for empty string.
 // e.g. " " trimmed to nothing.
 // Right Trim
 // Find 1st non-whitespace char & set NUL character there.
 last = lenOut-1; // off-by-1 adjustment.
 while(isspace(pTmp[last]))
 last--;
 pTmp[last+1] = '\0'; // Terminate trimmed string.
 }
 lenOut = strlen(pTmp); // Length of trimmed string.
 if(lenIn != lenOut) // Did we change anything?
 strcpy(pCStr , pTmp); // Yes, copy trimmed string back.
 return lenOut;
}

This function was explained in Chapter 23, Using File Input and File Output, and
will not be repeated here.

The bstring test trim function is as follows:4.

int BTrimStr(bstring b) {
 btrimws(b);
 return b->slen;
}

It takes the given bstring, trims it with a call to btrimws(), and then returns the
length of the new string. We really didn't need to write this function at all; we
only did so to compare it to our own CTrimStr() function.

To compile this program, make sure the bstrlib.h and bstrlib.c files are in5.
the same directory as this program. Then, enter the following command:

cc bstrlib.c bstr_trim.c -o bstr_split -Wall -Werror -std=c18

You can find these example source files in the source code repository.

C strings are very simple, but the C string library functions are rather complex and have a
number of issues that all programmers must pay very close attention to. bstrings are a
little more complicated to initialize, but the library itself provides a very rich set of string
handling, string list handling, and bstream functionality.

Appendix

[587]

Unicode and UTF-8
This is a very deep and broad topic. The purpose of this section is to provide a cursory
introduction to the topic, as well as to provide some resources to learn much more about
this topic.

A brief history
In the early days of computers, there was 7-bit ASCII, but that wasn't good enough for the
everyone, so someone came up with 16-bit Unicode. This was a good start, but it has its
own problems. Finally, the guys who invented C got around to inventing UTF-8, which is
backward-compatible with ASCII and dovetails into UTF-16 and UTF-32, so anyone around
the world can write "Hello, World!" in their own language using their own characters
on just about any computer. An added benefit of UTF-8 is that it is easily converted
into/from Unicode when needed. Unicode didn't stop there; it evolved as well. Unicode and
UTF-8 are different encodings, but they are still somewhat interrelated.

Where we are today
Unicode now replaces older character encodings, such as ASCII, ISO 8859, and EUC, at all
levels. Unicode enables users to handle practically any script or language used on this
planet. It also supports a comprehensive set of mathematical and technical symbols to
simplify scientific information exchange.

UTF-8 encoding is defined in ISO 10646-1:2000 Annex D (https:/ ​/ ​www.​cl. ​cam. ​ac.​uk/
~mgk25/​ucs/​ISO-​10646- ​UTF- ​8. ​html) and in RFC 3629 (http:/ ​/​www. ​ietf. ​org/ ​rfc/
rfc3629.​txt), as well as Section 3.9 of the Unicode 4.0 standard. It does not have the
compatibility problems of Unicode and earlier wide-character encodings. With UTF-8
encoding, Unicode can be used in a convenient and backward-compatible way in
environments that were designed entirely around ASCII, such as Unix. UTF-8 is the way in
which Unicode is used under Unix, Linux, macOS, and similar systems. It is clearly the way
to go for using Unicode under Unix-style operating systems.

https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
https://www.cl.cam.ac.uk/~mgk25/ucs/ISO-10646-UTF-8.html
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt

Appendix

[588]

Moving from ASCII to UTF-8
There are two approaches to add UTF-8 support to any ASCII program. One is called soft
conversion and the other is called hard conversion. In soft conversion, data is kept in its
UTF-8 form everywhere and only very few software changes are necessary. In hard
conversion, any UTF-8 data that the program reads will be converted into wide-character
arrays and will be handled as such everywhere within the application. Strings will only be
converted back into UTF-8 form at output time. Internally, a character remains a fixed-size
memory object.

Most applications can do very well with just soft conversion. This is what makes the
introduction of UTF-8 on Unix feasible at all. The C standard library headers to address
wide characters and Unicode are wchar.h, wctype.h, and uchar.h.

A UTF-to-Unicode example
To give you an idea of what it is like to convert between Unicode and UTF-8, consider the
following program:

#include <stdio.h>
#include <locale.h>
#include <stdlib.h>
#include <stdio.h>

int main(void) {
 wchar_t ucs2[5] = {0};
 if(!setlocale(LC_ALL , "en_AU.UTF-8")) {
 printf("Unable to set locale to Australian English in UTF-8\n");
 exit(1);
 }
 // The UTF-8 representation of string "æ°´è°ƒæ*Œå¤´"
 // (four Chinese characters pronounced shui3 diao4 ge1 tou2) */
 char utf8[] = "\xE6\xB0\xB4\xE8\xB0\x83\xE6\xAD\x8C\xE5\xA4\xB4" ;

 mbstowcs(ucs2 , utf8 , sizeof(ucs2) / sizeof(*ucs2));

 printf(" UTF-8: ");
 for(char *p = utf8 ; *p ; p++)
 printf("%02X ", (unsigned)(unsigned char)*p);
 printf("\n");
 printf("Unicode: ");
 for(wchar_t *p = ucs2 ; *p ; p++)
 printf("U+%04lX ", (unsigned long) *p);
 printf("\n");

Appendix

[589]

}

The main work of this program is the call to mbstowcs(), which converts from UTF-8 to
Unicode, which is here represented as a 16-bit wchar_t variable.

For further reading, refer to the following links:

Check out https:/ ​/​www. ​joelonsoftware. ​com/ ​2003/ ​10/​08/ ​the- ​absolute-
minimum- ​every- ​software- ​developer- ​absolutely- ​positively- ​must- ​know-
about-​unicode- ​and- ​character- ​sets- ​no-​excuses/ ​ for a great overview by Joel
Spolsky.
https:/​/ ​www. ​cl. ​cam. ​ac. ​uk/ ​~mgk25/ ​unicode. ​html also provides a deep dive
into UTF-8 and Unicode for programmers.
Finally, go to https:/ ​/​home. ​unicode. ​org to find more resources for Unicode and
UTF-8.

The C standard library
The C standard library offers quite a bit of functionality. The first thing to be aware of when
using any part of this library is what's in it. The following tables provide the header
filenames and descriptions of the functions prototyped in each header file.

The following table shows the library files before C99:

Filename Description
alloca.h Non-standard

assert.h
Contains the assert macro, used to assist with detecting logical errors and other types
of bugs in debugging versions of a program

ctype.h

Defines a set of functions used to classify characters by their types or to convert between
upper and lowercase in a way that is independent of the used character set (typically
ASCII or one of its extensions, although implementations utilizing EBCDIC are also
possible)

errno.h For testing error codes reported by library functions

float.h Defines macro constants specifying the implementation-specific properties of the
floating-point library

limits.h Defines macro constants specifying the implementation-specific properties of the integer
types

locale.h Defines localization functions
math.h Defines common mathematical functions
setjmp.h Declares the setjmp and longjmp macros, which are used for non-local exits

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html
https://home.unicode.org
https://home.unicode.org
https://home.unicode.org
https://home.unicode.org
https://home.unicode.org
https://home.unicode.org
https://home.unicode.org
https://home.unicode.org
https://home.unicode.org

Appendix

[590]

signal.h Defines signal-handling functions
stdarg.h For accessing a varying number of arguments passed to functions
stddef.h Defines several useful types and macros
stdio.h Defines core input and output functions

stdlib.h Defines numeric conversion functions, pseudo-random numbers generation functions,
memory allocation, and process control functions

string.h Defines string-handling functions
time.h Defines date- and time-handling functions
unistd.h POSIX functions (may not exist on non-Unix systems)

The following table shows which files have been added to C99:

Filename Description

iso646.h Defines several macros that implement alternative ways to express several standard
tokens, used for programming in ISO 646 variant character sets

wchar.h Defines wide string-handling functions

wctype.h Defines a set of functions used to classify wide characters by their types or to convert
between upper and lowercase

complex.h A set of functions for manipulating complex numbers (optional).
fenv.h Defines a set of functions for controlling the floating-point environment.
inttypes.h Defines exact-width integer types
stdbool.h Defines a Boolean data type
stdint.h Defines exact-width integer types
tgmath.h Defines type-generic mathematical functions

The following table shows which files have been added to C11:

Filename Description
stdalign.h For querying and specifying the alignment of objects
stdatomic.h For atomic operations on data shared between threads (optional)
stdnoreturn.h For specifying non-returning functions.

threads.h Defines functions for managing multiple threads, mutexes, and condition
variables (optional)

uchar.h Types and functions for manipulating Unicode characters

If you have been compiling programs throughout this book, these files will already exist on
your system. You need to find out where they are so that you can open them with an editor
and examine exactly what is in them.

Appendix

[591]

Method 1
In a terminal/console with a Unix shell (such as csh, tsh, bash, and so on), do the
following:

Create a simple program—for example, hello.c.1.
Add the header file you want to find and save it.2.
In a bash command shell, execute the following:3.

cc -H hello.c

Ouch! Way too much information. What you are seeing is the full #include stack of every
single header file that is included in each header file. As you can see, some are included a
lot of times.

You can also see that a lot of header files include other header files.

Method 2
In a terminal/console with a Unix shell (such as csh, tsh, bash, and so on), do the
following:

Create a simple program—for example, hello.c.1.
Add the header file you want to find, and save it.2.
In a bash command shell, execute the following:3.

cc -H hello.c 2>&1 | grep '^\.\ '

This command, which looks like a lot of gobbledegook, is doing the following:

It invokes the compiler with the -H option. The list of header files is sent to1.
stderr.
2>&1 redirects stderr to stdout.2.
stdout is then redirected via a pipe (|) to grep, a regular expression parser.3.
grep is told to search the beginning of each line for <period><space>:4.

'…' is the search string.
^ indicates the beginning of a line.
\. is a period (this is important as a dot (.) alone has special meaning
in grep).

Appendix

[592]

\ is a space (this is important as a space alone has special meaning
in grep).

You will now only see one or two header files without all of the #include2.
stacks.

Method 3
This one is the simplest of all if you have the locate program on your system.

In your terminal/console, enter the following command:

locate <filename.h>

You might also get a lot of output from this since your system might have many versions of
these header files.

Method 2 is best because it tells you exactly which header file the compiler is using.

Once you have found the function you want to know more about in one of these files, you
can then use the Unix man command to read about it on your system. To do so, enter the
following into a terminal/console:

man 3 <function>

This tells man to look in section 3 for the given function. Section 3 is where C functions are
described.

Alternatively, you could try the following:

man 7 <topic>

Section 7 is where general topics are described. There is a lot of information there.

If you are new to man, try entering man man and it will tell you about
itself.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Practical C Programming
B. M. Harwani

ISBN: 978-1-83864-110-8

Discover how to use arrays, functions, and strings to make large applications
Perform preprocessing and conditional compilation for efficient programming
Understand how to use pointers and memory optimally
Use general-purpose utilities and improve code performance
Implement multitasking using threads and process synchronization
Use low-level programming and the inline assembly language
Understand how to use graphics for animation
Get to grips with applying security while developing C programs

https://www.packtpub.com/programming/c-programming-cookbook

Other Books You May Enjoy

[594]

Extreme C
Kamran Amini

ISBN: 978-1-78934-362-5

Build advanced C knowledge on strong foundations, rooted in first principles
Understand memory structures and compilation pipeline and how they work,
and how to make most out of them
Apply object-oriented design principles to your procedural C code
Write low-level code that’s close to the hardware and squeezes maximum
performance out of a computer system
Master concurrency, multithreading, multi-processing, and integration with
other languages
Unit Testing and debugging, build systems, and inter-process communication for
C programming

https://www.packtpub.com/programming/extreme-c

Other Books You May Enjoy

[595]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

1
16-bit words 64

3
32-bit address space 254

A
absolute file path 500
accessors 201
American Standard Code for Information

Interchange (ASCII)
 about 72, 307, 309, 310
 grouping characters 308
anonymous custom type 208
argc parameter
 using 453, 454, 455, 456
argv parameter
 using 453, 454, 456
arithmetic types 204
array elements
 accessing 223, 224, 225
 accessing, via pointers 287, 288
 values, assigning 226
array names
 accessing, via pointers 284, 286
 interchanging, with pointers 294, 295, 296, 297
array of pointers
 to arrays 297, 298, 299, 300, 302, 303
array of strings
 creating 332, 333, 334, 335, 336
 using 332, 333, 334, 335, 336
array of structures
 about 353
 creating 353, 354
 elements, accessing 354, 355, 356
 manipulating 357, 358, 359, 360, 361, 362

array offset 224
array types 204
arrays
 about 219
 declaring 220, 221
 initializing 220, 221, 222, 223
 operating on, functions used 227, 228, 230, 231
 operating on, loops used 226, 227
 operations, using pointers 288
 passing, as function pointers 293
assignment
 about 79
 using 89
associative array 429
atod()
 strings, converting into numbers with 485
atoi()
 strings, converting into numbers with 484, 485
automatic storage class
 about 393
 lifetime 396
 versus dynamic storage class 393

B
binary mode 496
binary stream 494
bitwise operators 115, 116
block statement 44, 45
blocks
 about 35
 working with 37, 38, 39
Boolean operators 112
Boolean value
 representing 73
bottom-up implementation 61
break statement
 used, for controlling loops 163

[597]

brute-force repetition
 about 145, 147, 148, 149, 150
 downsides 147
buffer state 495
byte 67, 68, 69, 70

C
C compiler
 for OS 19
 installing, on Linux 20
 installing, on macOS 20
 installing, on Windows 20
C pointers 251
C program
 writing 14, 15
C strings
 array, with terminator 323
 exploring 323
 strengths 323
 weaknesses 324
call-by-value parameter 271
camel-case 82
card functions
 extracting 543, 544
card structures
 extracting 543, 544
card4.h 346, 347, 349, 350, 351, 352
carddeck.c
 card program 385, 386, 387, 388
 operations 382, 383, 384, 385
 structure 382
case-statement block 132
casting 108
caveman debugging 541
Central Processing Unit (CPU) 18
char type 307, 309, 310
character set 306
characters
 about 306, 307
 information, gathering 314, 315, 316
 manipulating 317, 318, 319, 321, 322
 operations, performing 311, 312, 313
 requisites, for C language 307
chunks of data 67, 68, 69
class 201

code commenting
 guidelines 28, 29
code
 experimenting with 31
command-line processors
 using 456, 457, 458, 459
command-line switches
 using 456, 457, 458, 459
Compact Discs (CDs) 494
compilation
 compiling phase 21
 linking phase 21
compiler options 213, 214
complex numbers 72
complex statements 44
complex structures
 need for 345
compound assignment operators 118, 119
compound statements 44
condition- or sentinel-controlled looping 145
conditional expressions 126, 127
conditional operator
 about 117
 expressions 116
console 10, 14
console input
 exploring, with scanf() 466, 467
console output
 with fprintf() 466
 with printf() 466
constant variables
 about 79
 naming 89
constants
 defining 87
 explicitly typed constants 88
 exploring 84
 literal constants 85
continue statement
 used, for controlling loops 164
control characters 306
control statements 46
cooked mode 465
counter-controlled looping 145
current position indicator 495

[598]

custom types
 header file, using 215, 217
Cygwin
 reference ink 20

D
dangling else problem 140, 141, 142
data buffer 495
data structures 345
data types
 about 64, 65, 66, 204
 addresses 67
 Boolean values 67
 characters 67
 numbers with fractions or decimal numbers 67
 ranges of values, providing 76, 77, 78
 sizes 74
 whole numbers 67
dealer.c program
 finishing 549, 550
debugging 23, 24
decimal (base-10) 436
deck functions
 extracting 548
deck structures
 extracting 547, 548
delimiters 39
deque 429
destructive backspace 307
Digital Video Discs (DVD) 494
digraph 36
direct addressing 253
discontinuity 103
do … while() statement 155, 156, 157
double indirection 276
doubles
 format specifiers, using 443
 optimal field widths, printing 445, 446, 447
 printing, in hexadecimal format 444
Doubly-Linked List 429
dynamic data structures 429, 430
dynamic memory allocation
 about 402
 C's memory layout 402, 403, 404
 considerations 408

 heap memory management 408, 409
dynamic memory
 accessing 407
 allocating 404, 405, 406
 lifetime 408
 releasing 404, 406, 407
dynamic storage class 393

E
Emacs 17
empty string
 about 329
 versus null strings 329, 330
End Of Line (EOL) 28
End-of-File (EOF) 495
enum types
 usage, simplifying with typedef keyword 207,

208, 209
enumerations
 about 116, 170, 171
 defining 171, 172, 173
 using 173, 174, 176, 177
error indicator 495
escape sequences 37
Everywhere 17
explicit assignment
 using 90
explicit type conversion
 using 108, 109
explicit typing
 using, with initialization 83, 84
expression statements 46
expressions
 about 96, 98
 operations 97
 simple 96
 value 97
extent
 exploring 556, 557
external (global) storage
 about 396
 versus internal (local) storage class 394, 396
external static storage class 399
external variables 556

[599]

F
fgets()
 used, for creating sorted list of names 488, 489,

490, 491, 492
file operations
 for stream types 497, 498
file processing
 about 508
 template program, creating to process filenames

on command line 508, 510, 512, 513
file scope 559, 564
file streams
 overview 494, 495
 properties 495
 structure 495
file
 concepts 494
 creating, of unsorted names 514
 opening 496, 497
 opening, for reading and writing 501, 502, 503
 selecting 496, 497
filenames
 obtaining, from command line 505, 506
 obtaining, within program 503, 504
 processing, on command line by creating

template program 508, 510, 512, 513
filesystem
 about 499
 file path 500
 filename 500
fixed storage allocation
 external storage allocation 392
 internal storage allocation 392
floating-point numbers
 alignment, using 443, 444
 field width, using 443, 444
 precision, using 443, 444
 zero-filling, using 443, 444
floats
 format specifiers, using 443
for()… statement 152, 153, 155
format specifiers, using for strings and characters
 about 447
 single character formatting, using 448, 449

 string field alignment, using 447, 448
 string field precision, using 447, 448
 string field width, using 447, 448
 string field zero-filling, using 447, 448
 sub-string output, exploring 448
format specifiers
 about 54
 using, for doubles 443
 using, for floats 443
 using, for signed integers 440
 using, for unsigned integers 435
formatted input
 reading, with scanf() 467, 468
fprintf()
 console output 466
fputs()
 used, for creating sorted list of names 488, 489,

490, 491, 492
function 92
function block 47, 49
function call statement 45
function declarations 59, 61
function definitions 47
function identifiers 47, 48, 49
function parameter list 47
function parameter scope 563
function parameters
 using, for passing in values 52, 53, 55, 56
function prototypes 60
function result type 47
function return value type 47
function return value
 assignment, to variable 92, 93
function return values 50, 51
function scope
 about 565, 566
 information, hiding 566, 567
function signature 48
function statement 45
functions, strings
 about 337
 strcat() function 337
 strchr() function 338
 strcmp() function 337
 strcpy() function 337

[600]

 strpbrk() function 338
 strrchr() function 338
 strstr() function 338
 strtok() function 337
functions
 about 46, 47
 used, for initializing structures 196, 197
 using, that operate on arrays 227, 228, 230,

231

G
gedit 17
general format specifier form 433, 434, 435
gets()
 disadvantages of using 487
 string input and output, using with 486, 487
global scope 559, 564, 565
global variables
 about 396
 advantage 396
GNU Compile Collection (GCC) 19
Goldilocks Principle 28
goto statement 159
grouping
 order 122, 124

H
hand functions
 extracting 545, 546
hand structures
 extracting 545, 546
header file
 about 214
 creating 534, 535, 536
 using, for custom types 214, 215, 216, 217
 using, for declarations 533
 using, for typedef specifiers 214, 215, 217
heap memory management
 about 408, 409
 memory leaks 409, 410, 411
Hello, world! program
 about 15
 clarifying, with comments 27, 28
 comments, adding 30, 31
 compiling 25, 26

 creating 24, 25
 running 26
 saving 25
 string, passing into function 330, 331
 typing 24, 25
hexadecimal (base-16) 436
hexadecimal format
 doubles, printing in 444

I
I/O device 309
I/O device identifier 496
I/O mode 495
identifier 82
if()… else… complex statement 127, 128, 129,

130, 131
implicit type conversion 104, 105, 107, 108
increment expression 295
increment operators
 about 120
 postfix, versus prefix incrementation 120, 121,

122

 using 290, 291, 292, 293
infinite loop 150, 167, 168
inheritance 201
initialization 81
input string
 trimming, from fgets() 514, 515
input/output (I/O) 533
integers
 sizes, specifying 70, 71
Integrated Development Environment (IDE) 19
internal (local) storage class
 about 395
 versus external (global) storage 394, 395, 396
 versus external storage class 394
internal data conversion
 using 482
internal static storage class 397, 398, 400
intrinsic types
 about 204
 renaming, with typedef keyword 204

[601]

K
keywords 39, 40
known-good program 347

L
Last In First Out (LIFO) 429
linear array 233
linkage
 compilation units 558
 exploring 558
linked list
 complex operations, performing 424
 dynamic data structure 411, 412
 operations, declaring 413, 414, 415, 416, 417,

418, 419, 420, 421, 422
 structure, testing with program 424, 425, 426,

427, 428
 structures 412, 413
 using, to sort names 521, 523, 524, 525, 526
Linux/Unix 17
literal constants 85, 86, 87
literal values (literals) 79
logical operators
 exploring 111, 113, 114
long-long integers
 formatting 441
lookup table 332
loop equivalency 157, 158
looping statements 46
loops
 controlling, with break and continue statement

163, 164, 165, 166
 used, for operating arrays 226, 227

M
machine language 18
macOS only 17
magnetic tape devices 494
main() function
 about 452
 forms 452, 453
 special features 452
map 429
member data 201

memory addressing 254
memory layout, C
 about 402, 404
 call stack 404
 global and static memory 403
 heap 404
 program code 403
 system memory 403
memory leaks 409, 410, 411
memory management 408
memory
 about 254, 255
 accessing 255
 managing 255, 256
MinGW
 reference link 20
multi-dimensional arrays
 declaring 238
 elements, accessing 241, 242, 243
 initializing 238
 manipulating, with loops 243
 one-dimensional arrays, migrating to 233
 using, in functions 245, 246, 247, 248, 249
multi-file program
 about 532, 533
 building 551, 553
 card functions, extracting 543, 544
 card structures, extracting 543, 544
 creating 542
 dealer.c program, finishing 549, 550
 deck functions, extracting 547, 548
 deck structures, extracting 547, 548
 hand functions, extracting 545, 546
 hand structures, extracting 545, 546
multiple assignments
 in single expression 119, 120
multiple if()… statements 135, 136, 137, 138, 139

N
N dimensions
 arrays, declaring 241
 arrays, initializing 241
N-dimensional arrays
 considering 238
name clash 536

[602]

named blocks 45
names
 reading 516, 517, 518, 519
 writing 516, 517, 518, 519
 writing, in sorted order 527, 528
negative whole numbers
 representing 70
nested if()… else… statements
 dangling else problem 140, 141, 142
 using 139, 140
nested loops
 using, to traverse three-dimensional array 244
 using, to traverse two-dimensional array 244
Not a Number (NaN) 103
Notepad 17
Notepad++ 17
null character 306
NULL pointer
 versus void* type 262
null string 329
number series, with power of 2 and 9
 formatting 437
 printing 441, 442
numbers, with decimals
 representing 72
numerical input
 reading, with scanf() 468, 469, 470, 471, 472

O
object-oriented programming (OOP) 201
octal (base-8) 436
off-by-one problem 151, 224
one-dimensional arrays
 about 233, 234
 migrating, to multi-dimensional arrays 233
one-off problem 69
operations on characters 109, 111
operations on numbers
 about 99, 100, 101, 102
 NaN 103
 overflow NaN 103
 precision, considering 104
 resulting issues, considering 102
 underflow NaN 103
operations

 order 122, 124
optimal field widths
 printing, for doubles 445, 446, 447
order of evaluation 122
overflow NaN 103

P
passing by reference 272, 273
path 500
period 373
periodicity 373
plain text editor
 capabilities 16
pointer arithmetic
 using 288, 289
pointer operations
 verbalizing 269, 270
pointer targets
 accessing 263, 264, 265, 267
pointer type
 about 204
 declaring 258, 259
pointer values
 printing 438, 439
pointers to structures
 using 278, 279
 using, in function 280, 281
pointers
 about 253
 addressing 251, 252
 arithmetic 267
 array elements, accessing via 287, 288
 array names, accessing via 284, 286
 array names, interchanging with 294, 295, 296,

297

 aspects 258
 comparing 267, 268, 269
 declaring, to function 422, 423
 direct addressing 253
 indirect addressing 253
 naming 259
 operations, performing 260
 real-life analogies, exploring 256, 257, 258
 structures and elements, accessing via 279
 used, for operating on arrays 288

[603]

 uses 252
 values (addresses), assigning 260
 values, assigning 261
positive whole numbers
 representing 70
postfix incrementation
 versus prefix incrementation 120, 121, 122
preprocessor directive 40, 45
preprocessor
 debugging 539, 540, 541
 limitations 537
 revisiting 536
 using 538, 539
printable characters 306
printf()
 console output 466
 general format specifier form 433, 434, 435
 overview 433
priority queue 429
program development cycle
 compile 18
 compiled environment 16
 edit 16, 17
 environments 16
 executable file, running 21, 22
 interpreted environments 16
 repeat 23
 verify 22
program scope 556
program
 order of execution 57, 59
 qualities 22
Pseudo-Random Number Generator (PRNG) 373
puts()
 string input and output, using with 487

Q
queue 429

R
random access stream 495
random number generators 372, 373
randomness 373
raw mode 465
Red Hat Package Manager (RPM) 20

relational operators
 exploring 111
relative file path 500
repetition 145, 147
return statement 45, 47
runtime library 18

S
safer operation functions, strings
 about 338, 339, 340
 strncat() function 338
 strncmp() function 338
 strncpy() function 338
scan set
 using, to limit possible input characters 476, 477
scanf() input field width
 controlling 478, 479, 480, 481
scanf()
 console input, exploring with 466
 formatted input, reading with 467, 468
 numerical input, reading with 468, 469, 470,

471, 472
 string and character input, reading with 473,

474, 475, 476
scope
 defining 555
seed 373
sentinel 323
sequence operator 117, 118
sequential access streams 495
set 429
signed integers
 about 69
 alignment, using 440, 441
 field width, using 440, 441
 format specifiers, using 440
 precision, using 440, 441
 zero-filling, using 440, 441
simple statements 44
single character formatting
 using 448
single characters
 representing 72, 73
single expression
 multiple assignments 119, 120

[604]

sizeof() operator 74, 75, 76
snake-case 82
Solid-State Drives (SSDs) 494
sorted list of names
 creating, with fgets() 488, 489, 490, 491, 492
 creating, with fputs() 488, 489, 490, 491, 492
source files
 about 16
 creating 534
 using, for definitions 533
sprintf()
 using, to convert values into and from strings

482, 483, 484
sscanf()
 using, to convert values into and from strings

482, 483, 484
stack 429
standard input stream 465
standard library 337
standard output stream 463, 464, 465
statements
 about 35
 block statement 44, 45
 complex statements 44
 compound statements 44
 control statements 46
 expression statements 46
 function call statement 45
 function statement 45
 looping statements 46
 preprocessor directive 45
 return statement 45
 simple statements 44
 working with 37, 38, 39
static specifier
 using, for functions 568, 569, 570, 571
static storage class
 exploring 397
 external static storage 399
 external static storage class 399
 internal static storage 397, 398
 lifetime 400
storage class
 auto 557
 extern 557

 register 557
 static 557
 typedef 557
storage classes
 defining 392
 dynamic storage allocation 392
 fixed storage allocation 392
streams
 about 461, 462, 463
 features 461
string and character input
 reading, with scanf() 473, 474, 475, 476
string input and output
 obtaining, from/to console 486
 using, with gets() and puts() 486, 487
strings
 about 36, 40
 converting, into numbers with atod() 484, 485
 converting, into numbers with atoi() 484, 485
 declaring 324, 325
 initializing 324, 325, 326, 327, 328
 operations, performing 337
 passing, to function 328, 329
struct types
 usage, simplifying with typedef keyword 209,

210, 211, 212
structure alignment 189
structure types 204
structure, with array of structures
 about 378
 carddeck.c, completing 381
 creating 378, 379
 elements, accessing 379, 380, 381
 manipulating 381
structure, with arrays
 creating 374
 elements, accessing 374
 elements, manipulating 375, 376
 hand operations 377, 378
 hand structure 376
 random number generators 372, 373
 randomness 372, 373
 using 372
structures, of structures
 about 194, 196

[605]

 initializing, with functions 196, 197
 printing 198, 199, 200, 201
structures, with other structures
 creating 362, 363
 elements, accessing 363, 364, 365
 manipulating 365, 366, 367, 368, 369, 370,

371

 using 362
structures
 about 184, 185
 declaring 185, 187, 189
 elements, accessing 190
 initializing 190, 191
 operations, performing with functions 191, 192,

193, 194
sub-arrays 298
sub-string output
 exploring 448
subscript 223
switch()… complex statement
 using 131, 132, 133, 134, 135
switch()… statement 177, 179, 180
synonym
 about 204
 using 204, 205, 206

T
template program
 creating, to process filenames on command line

508, 510, 512, 513
ternary operator 116
test and verify approach 252
text stream 494
Three Bears Principle 28
three dimensions
 arrays, declaring 240
 arrays, initializing 240, 241
three-dimensional array
 migrating to 236, 237, 238
 traversing, with nested loops 244
tokens 39, 40
top-down implementation 61
truncation 108
truth tables 112
two dimensions

 arrays, declaring 239
 arrays, initializing 239, 240
two's complement 437
two-dimensional array
 migrating to 234, 236
 traverse, using nested loops 244
type conversion
 explicit type conversion 108
 exploring 104
 implicit type conversion 104
typecasting 80
typedef keyword
 usages 212
 used, for renaming intrinsic types 204
 used, for simplifying enum types usage 207,

208, 209
 used, for simplifying struct types usage 209,

210, 211, 212
typedef specifiers
 header file, using 215, 216, 217
types
 about 80
 using 89

U
unary operators 120
unconditional branching 159, 160, 161, 162
underflow NaN 103
underscore-separated 82
unformatted input and output
 exploring 485
Unicode 311
Unicode Transformation Format 8-Bit (UTF-8) 307
union types 204
Universal Coded Character Set (UCS) 311
unnamed blocks 45
unnamed custom type 208
unsigned integers
 about 69
 format specifiers, using for 435
 negative numbers, considering as 437
 using, in different bases 436
unsorted names
 reading 520, 521
 sorting, for output 520, 521

UTF-8 310, 311

V
values
 about 80
 assignment, by passing function parameters 90,

91, 92
variable function arguments
 about 271, 272
 addresses, passing to function without pointer

variables 275, 276
 passing by reference 273
 pointers to pointers 276, 277, 278
 values, passing by reference 272, 274, 275
variable scope
 exploring 560
variables
 about 81
 block scope 560, 561, 562, 563
 elements, accessing 191
 explicit types 83
 naming 82
variadic function 57
vector 233
Vehicle Identification Number (VIN) 184

vi 17
Vim 17
Virtual Address Extension (VAX) Virtual Memory

System (VMS) 23
visibility
 block/local scope 556
 combining, with extent 559
 combining, with linkage 559
 exploring 556
 file scope 556
 function parameter scope 556
 global scope 556
 static scope 556
void type 204
void* type
 about 262, 263
 versus NULL pointer 262

W
while()… statement 150, 151, 152
whitespace 41, 43
whole numbers
 representing 69

Z
zero-based indexing 224

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: C Fundamentals
	Chapter 1: Running Hello, World!
	Technical requirements
	Writing your first C program
	Hello, world!

	Understanding the program development cycle
	Edit
	Compile
	Many C compilers for every OS
	A note about IDEs
	Installing a compiler on Linux, macOS, or Windows

	Run
	Verify
	Repeat
	A note about debugging

	Creating, typing, and saving your first C program
	Compiling your first C program
	Running your first C program
	Writing comments to clarify the program later
	Some guidelines on commenting code
	Adding comments to the Hello, world! program

	Learning to experiment with code
	Summary

	Chapter 2: Understanding Program Structure
	Technical requirements
	Introducing statements and blocks
	Experimenting with statements and blocks
	Understanding delimiters
	Understanding whitespace
	Introducing statements

	Introducing functions
	Understanding function definitions
	Exploring function identifiers
	Exploring the function block
	Exploring function return values
	Passing in values with function parameters

	Order of execution
	Understanding function declarations
	Summary

	Chapter 3: Working with Basic Data Types
	Technical requirements
	Understanding data types
	Bytes and chunks of data
	Representing whole numbers
	Representing positive and negative whole numbers
	Specifying different sizes of integers

	Representing numbers with decimals
	Representing single characters
	Representing Boolean true/false
	Understanding the sizes of data types
	The sizeof() operator
	Ranges of values

	Summary

	Chapter 4: Using Variables and Assignment
	Technical requirements
	Understanding types and values
	Introducing variables
	Naming variables
	Introducing explicit types of variables
	Using explicit typing with initialization

	Exploring constants
	Literal constants
	Defined values
	Explicitly typed constants
	Naming constant variables

	Using types and assignment
	Using explicit assignment, the simplest statement
	Assigning values by passing function parameters
	Assignment by the function return value

	Summary

	Chapter 5: Exploring Operators and Expressions
	Technical requirements
	Expressions and operations
	Introducing operations on numbers
	Considering the special issues resulting from operations on numbers
	Understanding NaN
	Understanding underflow NaN
	Understanding overflow NaN
	Considering precision

	Exploring type conversion
	Understanding implicit type conversion and values
	Using explicit type conversion – casting

	Introducing operations on characters
	Exploring logical and relational operators
	Bitwise operators
	The conditional operator
	The sequence operator
	Compound assignment operators
	Multiple assignments in a single expression
	Incremental operators
	Postfix versus prefix incrementation

	Order of operations and grouping
	Summary

	Chapter 6: Exploring Conditional Program Flow
	Technical requirements
	Understanding conditional expressions
	Introducing the if()… else… complex statement
	Using a switch()… complex statement
	Introducing multiple if()… statements
	Using nested if()… else… statements
	The dangling else… problem

	Summary

	Chapter 7: Exploring Loops and Iteration
	Technical requirements
	Understanding repetition
	Understanding brute-force repetition
	Introducing the while()… statement
	Introducing the for()… statement
	Introducing the do … while() statement
	Understanding loop equivalency
	Understanding unconditional branching – the dos and (mostly) don'ts of goto
	Further controlling loops with break and continue
	Understanding infinite loops
	Summary

	Chapter 8: Creating and Using Enumerations
	Technical requirements
	Introducing enumerations
	Defining enumerations
	Using enumerations

	The switch()… statement revisited
	Summary

	Section 2: Complex Data Types
	Chapter 9: Creating and Using Structures
	Technical requirements
	Understanding structures
	Declaring structures
	Initializing structures and accessing structure elements

	Performing operations on structures – functions
	Structures of structures
	Initializing structures with functions
	Printing a structure of structures – reusing functions

	The stepping stone to object-oriented programming
	Summary

	Chapter 10: Creating Custom Data Types with typedef
	Technical requirements
	Renaming intrinsic types with typedef
	Using synonyms

	Simplifying the use of enum types with typedef
	Simplifying the use of struct types with typedef
	Other uses of typedef
	Some more useful compiler options
	Using a header file for custom types and the typedef specifiers
	Summary

	Chapter 11: Working with Arrays
	Technical requirements
	Declaring and initializing arrays
	Initializing arrays

	Accessing array elements
	Assigning values to array elements

	Operating on arrays with loops
	Using functions that operate on arrays
	Summary

	Chapter 12: Working with Multi-Dimensional Arrays
	Technical requirements
	Going beyond one-dimensional arrays to multi-dimensional arrays
	Revisiting one-dimensional arrays
	Moving on to two-dimensional arrays
	Moving on to three-dimensional arrays
	Considering N-dimensional arrays

	Declaring and initializing multi-dimensional arrays
	Declaring arrays of two dimensions
	Initializing arrays of two dimensions
	Declaring arrays of three dimensions
	Initializing arrays of three dimensions
	Declaring and initializing arrays of N dimensions

	Accessing elements of multi-dimensional arrays
	Manipulating multi-dimensional arrays – loops within loops
	Using nested loops to traverse a two-dimensional array
	Using nested loops to traverse a three-dimensional array

	Using multi-dimensional arrays in functions
	Summary

	Chapter 13: Using Pointers
	Technical requirements
	Addressing pointers – the boogeyman of C programming
	Why use pointers at all?

	Introducing pointers
	Understanding direct addressing and indirect addressing
	Understanding memory and memory addressing
	Managing and accessing memory
	Exploring some analogies in the real world

	Declaring the pointer type, naming pointers, and assigning addresses
	Declaring the pointer type
	Naming pointers
	Assigning pointer values (addresses)

	Operations with pointers
	Assigning pointer values
	Differentiating between the NULL pointer and void*
	Understanding the void* type

	Accessing pointer targets
	Pointer arithmetic
	Comparing pointers

	Verbalizing pointer operations
	Variable function arguments
	Passing values by reference
	Passing addresses to functions without pointer variables
	Pointers to pointers

	Using pointers to structures
	Accessing structures and their elements via pointers
	Using pointers to structures in functions

	Summary

	Chapter 14: Understanding Arrays and Pointers
	Technical requirements
	Understanding array names and pointers
	Understanding array elements and pointers
	Accessing array elements via pointers

	Operations on arrays using pointers
	Using pointer arithmetic
	Using the increment operator
	Passing arrays as function pointers revisited
	Interchangeability of array names and pointers

	Introducing an array of pointers to arrays
	Summary

	Chapter 15: Working with Strings
	Technical requirements
	Characters – the building blocks of strings
	The char type and ASCII
	Beyond ASCII – UTF-8 and Unicode
	Operations on characters
	Getting information about characters
	Manipulating characters

	Exploring C strings
	An array with a terminator
	Strengths of C strings
	Weaknesses of C strings

	Declaring and initializing a string
	String declarations
	Initializing strings
	Passing a string to a function
	Empty strings versus null strings
	Hello, World! revisited

	Creating and using an array of strings
	Common operations on strings – the standard library
	Common functions
	Safer string operations

	Summary

	Chapter 16: Creating and Using More Complex Structures
	Technical requirements
	Introducing the need for complex structures
	Revisiting card4.h
	Understanding an array of structures
	Creating an array of structures
	Accessing structure elements within an array
	Manipulating an array of structures

	Using a structure with other structures
	Creating a structure consisting of other structures
	Accessing structure elements within the structure
	Manipulating a structure consisting of other structures

	Using a structure with arrays
	Understanding randomness and random number generators
	Creating a structure with an array
	Accessing array elements within a structure
	Manipulating array elements within a structure
	Revisiting the hand structure
	Revisiting hand operations

	Using a structure with an array of structures
	Creating a structure with an array of structures
	Accessing individual structure elements of the array within a structure
	Manipulating a structure with an array of structures
	Completing carddeck.c
	Revisiting the deck structure
	Revisiting deck operations
	A basic card program

	Summary

	Section 3: Memory Manipulation
	Chapter 17: Understanding Memory Allocation and Lifetime
	Technical requirements
	Defining storage classes
	Understanding automatic versus dynamic storage classes
	Automatic storage
	Dynamic storage

	Understanding internal versus external storage classes
	Internal or local storage classes
	External or global storage classes
	The lifetime of automatic storage

	Exploring the static storage class
	Internal static storage
	External static storage
	The lifetime of static storage

	Summary

	Chapter 18: Using Dynamic Memory Allocation
	Technical requirements
	Introducing dynamic memory
	A brief tour of C's memory layout

	Allocating and releasing dynamic memory
	Allocating dynamic memory
	Releasing dynamic memory
	Accessing dynamic memory
	The lifetime of dynamic memory

	Special considerations for dynamic allocation
	Heap memory management
	Memory leaks

	The linked list dynamic data structure
	Linked list structures
	Declaring operations on a linked list
	Pointers to functions

	More complex operations on a linked list
	A program to test our linked list structure

	Other dynamic data structures
	Summary

	Section 4: Input and Output
	Chapter 19: Exploring Formatted Output
	Technical requirements
	Revisiting printf()
	Understanding the general format specifier form

	Using format specifiers for unsigned integers
	Using unsigned integers in different bases
	Considering negative numbers as unsigned integers
	Exploring powers of 2 and 9 in different bases
	Printing pointer values

	Using format specifiers for signed integers
	Using the signed integer field width, precision, alignment, and zero-filling
	Formatting long-long integers
	Powers of 2 and 9 with different modifiers

	Using format specifiers for floats and doubles
	Using the floating-point field width, precision, alignment, and zero-filling
	Printing doubles in hexadecimal format
	Printing optimal field widths for doubles

	Using format specifiers for strings and characters
	Using the string field width, precision, alignment, and zero-filling
	Exploring the sub-string output
	Using single character formatting

	Summary

	Chapter 20: Getting Input from the Command Line
	Technical requirements
	Revisiting the main() function
	The special features of main()
	The two forms of main()

	Using argc and argv
	A simple use of argc and argv
	Command-line switches and command-line processors

	Summary

	Chapter 21: Exploring Formatted Input
	Technical requirements
	Introducing streams
	Understanding the standard output stream
	Understanding the standard input stream
	Revisiting the console output with printf() and fprintf()
	Exploring the console input with scanf()

	Reading formatted input with scanf()
	Reading numerical input with scanf()
	Reading string and character input with scanf()
	Using a scan set to limit possible input characters
	Controlling the scanf() input field width

	Using internal data conversion
	Using sscanf() and sprintf() to convert values into and from strings
	Converting strings into numbers with atoi() and atod()

	Exploring unformatted input and output
	Getting the string input and output to/from the console
	Using the simple input and output of strings with gets() and puts()
	Understanding why using gets() could be dangerous

	Creating a sorted list of names with fgets() and fputs()

	Summary

	Chapter 22: Working with Files
	Technical requirements
	Understanding basic file concepts
	Revisiting file streams
	Understanding the properties of the FILE streams
	Opening and closing a file
	Understanding file operations for each type of stream

	Introducing the filesystem essentials
	Introducing the filesystem
	Understanding a file path
	Understanding a filename

	Opening files for reading and writing
	Getting filenames from within the program
	Getting filenames from the command line

	Summary

	Chapter 23: Using File Input and File Output
	Technical requirements
	File processing
	Creating a template program to process filenames given on the command line

	Creating a file of unsorted names
	Trimming the input string from fgets()
	Reading names and writing names

	Reading unsorted names and sorting them for output
	Using a linked list to sort names
	Writing names in sorted order

	Summary

	Section 5: Building Blocks for Larger Programs
	Chapter 24: Working with Multi-File Programs
	Technical requirements
	Understanding multi-file programs
	Using header files for declarations and source files for definitions
	Creating source files
	Creating header files

	Revisiting the preprocessor
	Understanding the limits and dangers of the preprocessor
	Knowing some dangers of the preprocessor

	Using the preprocessor effectively
	Debugging with the preprocessor

	Creating a multi-file program
	Extracting Card structures and functions
	Extracting Hand structures and functions
	Extracting Deck structures and functions
	Finishing the dealer.c program

	Building a multi-file program
	Summary

	Chapter 25: Understanding Scope
	Technical requirements
	Defining scope – visibility, extent, and linkage
	Exploring visibility
	Exploring extent
	Exploring linkage
	Understanding compilation units

	Putting visibility, extent, and linkage all together

	Exploring variable scope
	Understanding the block scope of variables
	Understanding function parameter scope
	Understanding file scope
	Understanding global scope

	Understanding function scope
	Understanding scope and information hiding
	Using the static specifier for functions

	Summary
	Epilog
	Taking the next steps
	More advanced C topics
	More advanced programming topics
	Picking a project for yourself
	Resources

	Appendix
	C definition and keywords
	C keywords

	Table of operators and their precedence
	Summary of useful GCC and Clang compiler options
	ASCII character set
	The Better String Library (Bstrlib)
	A quick introduction to Bstrlib
	A few simple examples

	Unicode and UTF-8
	A brief history
	Where we are today
	Moving from ASCII to UTF-8
	A UTF-to-Unicode example

	The C standard library
	Method 1
	Method 2
	Method 3

	Other Books You May Enjoy
	Index

